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Figure 1: Our reduced-order model accurately simulates the cutting of a chocolate cake at various angles by time-stepping in

a latent space of only dimension 𝑟 = 6. The original full-order simulation employs 200, 000 particles. Courtesy of dimension

reduction, our approach is 10.2× faster than the full-order simulation.

ABSTRACT

We propose a hybrid neural network and physics framework for

reduced-order modeling of elastoplasticity and fracture. State-of-

the-art scientific computing models like the Material Point Method

(MPM) faithfully simulate large-deformation elastoplasticity and

fracture mechanics. However, their long runtime and large memory

consumption render them unsuitable for applications constrained

by computation time and memory usage, e.g., virtual reality. To

overcome these barriers, we propose a reduced-order framework.

Our key innovation is training a low-dimensional manifold for the
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Kirchhoff stress field via an implicit neural representation. This low-

dimensional neural stress field (NSF) enables efficient evaluations

of stress values and, correspondingly, internal forces at arbitrary

spatial locations. In addition, we also train neural deformation and

affine fields to build low-dimensional manifolds for the deformation

and affine momentum fields. These neural stress, deformation, and

affine fields share the same low-dimensional latent space, which

uniquely embeds the high-dimensional simulation state. After train-

ing, we run new simulations by evolving in this single latent space,

which drastically reduces the computation time and memory con-

sumption. Our general continuum-mechanics-based reduced-order

framework is applicable to any phenomena governed by the elasto-

dynamics equation. To showcase the versatility of our framework,

we simulate a wide range of material behaviors, including elastica,

sand, metal, non-Newtonian fluids, fracture, contact, and collision.

We demonstrate dimension reduction by up to 100,000× and time

savings by up to 10×.
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1 INTRODUCTION

Physical simulation plays a crucial role in computational mechan-

ics, digital twins, computational design, robotics, animation, visual

effects, and virtual reality. A crucial class of these physical sim-

ulations are those governed by the conservation of momentum

equation [Gonzalez and Stuart 2008],

𝑅 ¥𝝓 = ∇𝑿 · 𝑷 + 𝑅𝒃, (1)

where 𝑷 is the first Piola-Kirchhoff stress, 𝝓 is the deformation

map, 𝑅 is the initial density, 𝒃 is the body force, and 𝑿 ∈ Ω0 is the

reference position defined over domain Ω0. This partial differential

equation (PDE) governs a wide range of elastoplastic behaviors.

To numerically solve this PDE, one has to spatially and tempo-

rally discretize it, e.g., via finite difference, finite element, or finite

volume methods. A particularly flexible discretization framework

is the material point method (MPM) [Jiang et al. 2016; Sulsky et al.

1995]. MPM discretizes the spatial field via both Lagrangian parti-

cles and Eulerian grids. Thanks to this dual discretization paradigm,

MPM thrives at handling large deformations, topology changes,

and self-contact.

Nevertheless, MPM’s versatility also comes at the cost of compu-

tation burden, in terms of both long runtime and excessive memory

consumption. To obtain accurate results, MPM tracks a large num-

ber of state variables through the particles, often at the order of

millions. Such a computation bottleneck significantly hinders the

feasibility of deploying MPM in time-critical and memory-bound

applications. Notably, MPM’s high-dimension state variables also

pose a challenge in applications where synchronization is required.

For example, in virtual reality and cloud gaming, multiple users

share the same simulated physical environment; each user’s simu-

lation state needs to be efficiently shared with others via internet

streaming. Synchronizing millions of MPM particle data at frame

rate is simply not possible.

We propose to solve these computational challenges via reduced-

order modeling (ROM), also known as model reduction [Barbič

and James 2005]. ROM reduces the computation cost by training a

low-dimensional latent embedding of the original high-dimensional

simulation data. After training, instead of evolving the original high-

dimensional state variables over time, ROM only needs to time-step

in the low-dimensional latent space, and synchronization between

users only requires sharing the low-dimensional latent vector. The

classic reduced-order, elasticity-only finite element method (FEM)

[Sifakis and Barbic 2012] trains a low-dimensional embedding for

the (discretized) deformation map 𝝓 in eq. (1). However, the low-

dimensional deformation embedding alone is not enough for MPM

and elastoplasticity simulations in general.

History-dependent plasticity state variables.MPM simula-

tions feature history-dependent effects, e.g., plastic deformations

of sands or metals. The low-dimensional deformation embedding

by itself is unable to determine the plasticity state variables that

are crucial for MPM time-stepping.

Deformation gradients as independent state variables.MPM

treats the deformation gradient as a separate state variable that

evolves independently from deformation state variables. Again,

the low-dimensional deformation embedding cannot capture these

deformation gradients.

Our key observation is that the ultimate purpose of all these

additional state variables is computing the stress field 𝑷 in eq. (1).

As such, we can bypass the need to capture these intermediate

state variables by directly training a low-dimensional embedding

for the stress field itself. The low-dimensional stress and deforma-

tion embedding together capture all the information necessary for

MPM time-stepping. We construct the low-dimensional stress em-

beddings via implicit neural representations, also known as neural

fields. Our neural stress field (NSF) approach enables stress evalua-

tion and, in turn, force evaluation at arbitrary spatial locations. In

a similar vein, we build low-dimensional neural deformation fields.

To support MPM’s affine particle-in-cell transferring scheme [Jiang

et al. 2015], we also build low-dimensional neural affine fields for

the affine momentum field. All these three neural fields share the

same latent space.

After training, we solve new physical simulation problems via

projection-based latent space dynamics [Benner et al. 2015; Carlberg

et al. 2017]. During this PDE-constrained latent space dynamics

stage, we obtain computation savings by evaluating the neural

fields only at a small spatial subset, similar to the idea of cubature

[An et al. 2008]. Our general, stress-based ROM approach works

with any problem governed by the momentum equation eq. (1). To

showcase the versatility of our approach, we validate NSF on a wide

range of elastoplastic phenomena, including elastica, fracture, metal,

sand, non-Newtonian fluids, contact, and collision. We demonstrate

dimension reduction of 100,000× and computation savings of 10×.

2 RELATED WORK

The Material Point Method. Sulsky et al. [1995] introduced MPM

by combining Lagrangian and Eulerian techniques for solid mechan-

ics, drawing upon the earlier works by Brackbill and Ruppel [1986];

Harlow [1962] on PIC/FLIP. Since its introduction to the graphics

community [Hegemann et al. 2013; Stomakhin et al. 2013], MPM

has garnered considerable attention. Its primary advantage in mod-

eling elastoplastic materials lies in its capability to handle extreme

deformation and topological changes. MPM has been successfully

applied to simulate various phenomena, including granular media

[Chen et al. 2021; Daviet and Bertails-Descoubes 2016; Klár et al.

2016; Yue et al. 2018], non-Newtonian fluids [Fei et al. 2019; Yue et al.

2015], viscoelasticity [Fang et al. 2019], fracture [Wang et al. 2019;

Wolper et al. 2020, 2019], and thermomechanics [Ding et al. 2019].

Efforts have been made to speed up MPM simulations through GPU
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[Fei et al. 2021; Gao et al. 2018; Wang et al. 2020b], multi-node [Qiu

et al. 2023], and multigrid [Wang et al. 2020a] accelerations, as well

as compiler optimization [Hu et al. 2019]. However, the substantial

computational cost and memory consumption of MPM still present

challenges that need to be addressed.

Reduced-order Modeling. Classic reduced-order modeling meth-

ods employ linear subspaces [Barbič and James 2005; Sifakis and

Barbic 2012]. These subspaces are often constructed via principal

component analysis and, equivalently, proper orthogonal decom-

position [Berkooz et al. 1993; Holmes et al. 2012]. These linear

subspaces have been successively applied to solids [An et al. 2008;

Barbič and Zhao 2011; Kim and James 2009; Xu et al. 2015; Yang

et al. 2015] and fluids [Kim et al. 2019; Kim and Delaney 2013;

Treuille et al. 2006; Wiewel et al. 2019]. Recently ROM methods

have been exploring nonlinear low-dimensional manifolds, often

leveraging autoencoder neural networks [Lee and Carlberg 2020].

These nonlinear approaches enable smaller latent space dimensions

in comparison with the classic linear approaches [Fulton et al. 2019;

Shen et al. 2021]. Our technique also falls into this nonlinear model

reduction category.

Relatedly, there has been lots of progress in data-driven latent

space dynamics [Lusch et al. 2018], and the entire latent space evo-

lution is strictly learned via another neural network, e.g., recurrent

neural networks [Wiewel et al. 2019]. By contrast, our method fol-

lows the classic, invasive ROM literature and evolves the latent

space using the numerical methods and PDEs that were used to

generate the training data. In our method, the latent space dynamics

are entirely PDE-based without any data-driven component.

Neural Fields. A neural field [Xie et al. 2021] parameterizes a

spatially dependent vector field via a neural network. The pioneer-

ing works by Chen and Zhang [2019]; Mescheder et al. [2019];

Park et al. [2019] employ this representation for signed distance

fields, where different latent space vector corresponds to differ-

ent geometries. Since then, it has been widely adopted for neural

rendering [Mildenhall et al. 2020], topology optimization [Zehn-

der et al. 2021], geometry processing [Aigerman et al. 2022; Yang

et al. 2021], and various PDE problems [Chen et al. 2022; Raissi

et al. 2019]. Recently, Chen et al. [2023a,b]; Pan et al. [2023] have

leveraged neural fields for ROM. Notably, Chen et al. [2023a] build

a neural-field-based, reduced-order framework for MPM. Their

approach constructs a low-dimensional embedding only for the

deformation field. Consequently, their method is unable to handle

history-dependent plasticity, and the deformation gradient com-

puted from differentiating the learned deformation field is too in-

accurate for large deformation phenomena such as a fracture. As

a major point of departure, we train a low-dimensional manifold

directly for the stress field and can therefore handle both plasticity

and fracture. Furthermore, we achieve angular momentum con-

servation by training a low-dimensional neural affine field while

[Chen et al. 2023a]’s formulation suffers from excessive dissipation.

3 BACKGROUND: FULL-ORDER MPM

This section will briefly recap the essential ingredients of the full-

orderMPMmodel. Sections 4 and 5will introduce the corresponding

reduced-order model. We refer to Jiang et al. [2016]; Sulsky et al.

[1995] for additional MPM details.

3.1 Finite strain elasticity and elastoplasticity

Let Ω0 ⊂ R3 denote the material space and Ω𝑡 the world space

at time 𝑡 . We are interested in the dynamics of a continuum in

time 𝑡 ∈ [0,𝑇 ] . The deformation map 𝒙 := 𝝓 (𝑿 , 𝑡) maps 𝑿 ∈ Ω0

to world space coordinate 𝒙 ∈ Ω𝑡 . From the Lagrangian view,

the dynamics of a continuum can be described by a density field

𝑅(𝑿 , 𝑡) : Ω0 × [0,𝑇 ] → R and a velocity field 𝑽 (𝑿 , 𝑡) =
𝜕𝝓 (𝑿 ,𝑡 )

𝜕𝑡 :

Ω0 × [0,𝑇 ] → R3 . They are governed by the conservation of mass

𝑅(𝑿 , 𝑡) 𝐽 (𝑿 , 𝑡) = 𝑅(𝑿 , 0), (2)

and the conservation of momentum

𝑅(𝑿 , 0)
𝜕𝑽

𝜕𝑡
(𝑿 , 𝑡) = ∇𝑿 · 𝑷 + 𝑅(𝑿 , 0)𝒈. (3)

Here 𝐽 = det(𝑭 ), 𝑭 =
𝜕𝝓
𝜕𝑿 (𝑿 , 𝑡) is the deformation gradient, 𝑷 is

the first Piola-Kirchhoff stress, and 𝒈 is the gravity term. 𝑷 can be

related to the Kirchhoff stress 𝝉 as 𝑷 = 𝝉𝑭 −𝑇 .

For a hyperelastic solid, the Kirchhoff stress can be computed as

𝝉 =
𝜕𝜓
𝜕𝑭 (𝑭 )𝑭

𝑇 ,where𝜓 is the energy density function of the chosen

constitutive model. For an elastoplastic continuum, the deformation

gradient is multiplicatively decomposed into 𝑭 = 𝑭𝐸𝑭𝑃 , with the

former being the elastic deformation that supplies elastic force, and

the latter being the permanent plastic deformation gradient. The

decomposition requires that 𝝉 (𝑭𝐸 ) lies within an admissible region

defined by some yield condition 𝑦 (𝝉 ) < 0. Given 𝑭 , 𝑭𝐸 evolves

from 𝑭 , following some plastic flow until the yield condition is

satisfied. The procedure is often called return mapping. The rest

of the deformation gradient then becomes permanent deformation

𝑭𝑃 .

3.2 MPM discretization

MPM discretizes a continuum bulk into a set of Lagrangian particles

𝑝, and discretizes time 𝑡 into a sequence of timesteps 𝑡0 = 0, 𝑡1, 𝑡2, ...

Here we take a fixed stepsize Δ𝑡, so 𝑡𝑛 = 𝑛Δ𝑡 . The advection is

performed on particles so eq. (2) is naturally satisfied. If we ap-

proximate 𝑽𝑛 by 1
Δ𝑡 (𝑿

𝑛+1 − 𝑿𝑛), and assume no gravity and free

surface for clarity, for an arbitrary test function 𝑄, the weak form

of eq. (3) is then given by
∫

Ω0

𝑅(𝑿 , 0)
1

Δ𝑡

(

𝑽𝑛+1 − 𝑽𝑛
)

𝑄𝑑𝑿 = −

∫

Ω0

𝑷∇𝑿𝑄𝑑𝑿 . (4)

Pushing forward the integral from Ω0 to Ω𝑛 = Ω𝑡𝑛 , we obtain
∫

Ω𝑛

𝜌
(

𝒙, 𝑡𝑛
) 1

Δ𝑡

(

𝒗𝑛+1 − 𝒗𝑛
)

𝑞𝑑𝒙 = −

∫

Ω𝑛

1

𝐽𝑛
𝑷𝑭𝑛𝑇∇𝒙𝑞𝑑𝒙, (5)

where 𝜌, 𝒗𝑛, 𝒗𝑛+1 and 𝑞 are the Eulerian counterparts of 𝑅, 𝑽𝑛, 𝑽𝑛+1

and 𝑄, respectively [Jiang et al. 2016].

MPM adopts B-Spline-based interpolations and uses material

particles 𝑝 as quadratures to approximate the integration eq. (5). Let

𝑚𝑝 denote the mass of particle 𝑝 with initial position 𝑿𝑝 . Denote

its position and velocity at time 𝑡𝑛 by 𝒙𝑛𝑝 and 𝒗𝑛𝑝 . Let 𝑚𝑖 and 𝒗𝑖
denote the mass and velocity on background grid node 𝑖 at position

𝒙𝑖 . Let 𝑁 (𝒙) denote the weight function, and𝑤𝑛
𝑖𝑝 = 𝑁

(

𝒙𝑛𝑝 − 𝒙𝑖

)

.
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Employing mass lumping, we can express the force equilibrium as

1

Δ𝑡
𝑚𝑛
𝑖

(

𝒗𝑛+1𝑖 − 𝒗𝑛𝑖

)

= −
∑︁

𝑝

𝝉𝑛𝑝∇𝑤
𝑛
𝑖𝑝𝑉

0
𝑝 , (6)

thus providing a way to update the next stage grid velocities 𝒗𝑛+1𝑖 .

Here 𝑉 0
𝑝 and 𝝉𝑛𝑝 are the initial volume and Kirchhoff stress at time

𝑡𝑛 of material particle 𝑝.

3.3 MPM algorithm

At each step, particle mass and momentum are transferred to grid

nodes. Grid velocities are updated and then transferred back to

particles for advection. Let 𝑪𝑛𝑝 denote the affine momentum of

particle 𝑝 at time 𝑡𝑛 . The explicit MPM algorithm can therefore be

summarized as the following:

(1) P2G. Transfer mass and momentum from particles to grid as

𝑚𝑛
𝑖 =

∑

𝑝 𝑤
𝑛
𝑖𝑝𝑚𝑝 and𝑚

𝑛
𝑖 𝒗

𝑛
𝑖 =

∑

𝑝 𝑤
𝑛
𝑖𝑝𝑚𝑝

(

𝒗𝑛𝑝 + 𝑪𝑛𝑝

(

𝒙𝑖 − 𝒙𝑛𝑝

))

,

if the APIC transfer scheme is adopted. If the conventional

PIC scheme is adopted, the latter is simply replaced by𝑚𝑛
𝑖 𝒗

𝑛
𝑖 =

∑

𝑝 𝑤
𝑛
𝑖𝑝𝑚𝑝𝒗

𝑛
𝑝 .

(2) Grid update. Update grid velocities at next timestep by

𝒗𝑛+1𝑖 = 𝒗𝑛𝑖 −
Δ𝑡
𝑚𝑖

∑

𝑝 𝝉
𝑛
𝑝∇𝑤

𝑛
𝑖𝑝𝑉

0
𝑝 +Δ𝑡𝒈. Collision and Dirichlet

boundary conditions are also handled at this stage.

(3) G2P. Transfer velocities back to particles and update particle

states. 𝒗𝑛+1𝑝 =
∑

𝒗𝑛+1𝑖 𝑤𝑛
𝑖𝑝 , 𝒙

𝑛+1
𝑝 = 𝒙𝑛𝑝 + Δ𝑡𝒗𝑛+1𝑝 ,

𝑪𝑛+1𝑝 =
12

Δ𝑥2 (𝑏 + 1)

∑︁

𝑖

𝑤𝑛
𝑖𝑝𝒗

𝑛+1
𝑖

(

𝒙𝑛𝑖 − 𝒙𝑛𝑝

)𝑇
,

𝑭 trial,𝑛+1𝑝 =

(

I + Δ𝑡
∑︁

𝑖

𝒗𝑛+1𝑖

(

∇𝑤𝑛
𝑖𝑝

)𝑇
)

𝑭𝐸,𝑛𝑝 ,

𝑭𝐸,𝑛+1𝑝 = returnMap(𝑭 trial,𝑛+1𝑝 ) and 𝝉𝑛+1𝑝 = 𝝉 (𝑭𝐸,𝑛+1𝑝 ) .

Here 𝑏 is the B-spline degree, and Δ𝑥 is the Eulerian grid

spacing. If additional damping is desired, RPIC can be added

in the computation of 𝑪𝑝 as in [Fang et al. 2019].

4 REDUCED-ORDER MODEL: KINEMATICS

To reduce the full-order MPM model, we will construct a nonlinear

approximation to the solution of eq. (3) over a low-dimensional

manifold. A schematic illustration is shown in fig. 2.

4.1 Low-dimensional Manifold Construction

Let the continuous field 𝒇 (𝑿 , 𝑡 ; 𝜇) : Ω0 × [0,𝑇 ] → R𝑚 denote any

relevant state variable in the solution to eq. (3) for 𝑿 ∈ Ω0 at time

𝑡 . Example state variables include the deformation map, stress, etc.

Here, 𝜇 is the generalized problem parameter, including but not

limited to material parameters, initial conditions, and boundary

conditions. Choice of 𝜇 for each experiment will be detailed in

section 6. We seek a continuous field 𝒇 (·; �̂�) defined over Ω0 and

parameterized by �̂� ∈ L, a low-dimensional latent space, such that

𝒇 (𝑿 ; �̂� (𝑡, 𝜇)) ≈ 𝒇 (𝑿 , 𝑡 ; 𝜇),∀𝑿 ∈ Ω0 and ∀𝑡 ∈ [0,𝑇 ] . (7)

The dimension 𝑟 of L ⊂ R𝑟 is taken to be a small number so that

the dynamics of a continuum becomes the evolution of the latent

space vector �̂� in a low-dimensional latent space L . For notational

Figure 2: Latent space kinematics. Given a latent space vector

�̂�𝑡 ∈ L, evaluating the neural deformation, stress, and affine

fields at any reference position 𝑿𝑝 ∈ Ω0 (e.g., the black dot

in Ω0) results in the corresponding deformation, stress, and

affinemomentum at time 𝑡 at the current position (the boxed

dot in Ω𝑡 ).

simplicity, we will omit explicit dependence on 𝜇. To computation-

ally construct any of these low-dimensional manifolds, we will

employ a neural field, also known as implicit neural representation

[Xie et al. 2021]. Next, we will discuss specific MPM state variables

for which we will build neural fields.

4.2 Neural Deformation Fields

Similar to classic elastic-only FEM, onemust build a low-dimensional

manifold for the deformation field 𝝓 (𝑿 , 𝑡) [Barbič and James 2005].

We achieve this by constructing a manifold 𝒈(𝑿 , �̂�) [Chen et al.

2023a] such that

∀𝑿 ∈ Ω0,∀𝑡 ∈ [0,𝑇 ],𝒈(𝑿 , �̂�𝑡 ) ≈ 𝝓 (𝑿 , 𝑡) = 𝒙𝑡 . (8)

4.3 Neural Stress Fields

Unlike elasticity-only FEM, MPM features additional history-based

plastic effects and state variables. Moreover, the deformation gradi-

ent 𝑭 is treated as an evolving state variable independent of 𝒙 . To

address these various state variables, we observe that representing

the stress field is a neat yet effective approach. Since the eventual

goal of all these state variables is computing the stress tensor, by

directly building a low-dimensional manifold for the stress tensor,

we avoid cumbersome treatment of numerous plasticity state vari-

ables as well as inaccurate calculation of deformation gradient. We

approximate the Kirchhoff stress field 𝝉 (𝒙, 𝑡) by a manifold 𝒉(𝑿 , �̂�)

such that

∀𝑿 ∈ Ω0,∀𝑡 ∈ [0,𝑇 ],𝒉(𝑿 , �̂�𝑡 ) ≈ 𝝉 (𝒙, 𝑡) = 𝝉 (𝝓 (𝑿 , 𝑡), 𝑡). (9)

The right hand side of eq. (5) can thus be approximated as

−

∫

Ω𝑛

1

𝐽𝑛
𝝉 (𝒙)∇𝒙𝑞𝑑𝒙 = −

∫

Ω0

𝝉 (𝑿 )∇𝒙𝑞𝑑𝑿 ≈ −

∫

Ω0

𝒉(𝑿 , �̂�𝑛)∇
𝒙𝑞𝑑𝑿 ,

which naturally fits within the spatial discretization of MPM.

Remarks. (1) An alternative approach is to use the deformation

gradient to compute the stress. The deformation gradient can be

computed by differentiating the neural deformation field [Chen
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et al. 2023a]. However, the numerical deformation gradient 𝑭MPM

in the full-order MPM is not computed from
𝜕𝝓
𝜕𝑿 , but rather nu-

merically integrated. Consequently, this approach will cease to

provide accurate grid forces when
𝜕𝝓
𝜕𝑿 does not resemble 𝑭MPM,

e.g., in numerical fracture. A well-trained neural stress field, on

the other hand, directly supplies the correct grid forces for MPM

grid update. (2) Since stress is computed from the elastic part of

the deformation gradient 𝑭𝐸 = returnMap(𝑭 trial), the plastic flow

is implicitly stored. Evaluation of the return map can be avoided

in deployment, thus reducing the computational cost. Overall, our

neural-stress-field approach is a general approach that allows for

reduced-order solutions for all the standard plasticity models.

4.4 Neural Affine Fields

Additionally, to accommodate for the affine momentum term 𝑪

used in APIC and RPIC transfer scheme (section 3.3), we construct

another manifold 𝒍 (𝑿 , �̂�) such that 𝒍 (𝑿 , �̂�𝑛) ≈ 𝑪 (𝝓 (𝑿 , 𝑡), 𝑡). This

field enables angular momemtum conservation [Jiang et al. 2015].

4.5 Network training

Let T = {𝑡0, 𝑡1, ..., 𝑡𝑁 = 𝑇 }, P denote the set of all material particles

𝑝, U denote the set of problem parameters 𝜇 that we are interested

in, and Utrain ⊂ U a subset for training. Let the training set be

{(𝒙𝑛𝑝 ,𝝉
𝑛
𝑝 , 𝑪

𝑛
𝑝 ) : 𝑝 ∈ P, 𝜇 ∈ Utrain}. Define 𝒙

𝑛
= [𝒙𝑛1 , 𝒙

𝑛
2 , ..., 𝒙

𝑛
| P |

]𝑇 .

The implementation of the three manifolds is summarized below:

(1) Train displacement decoder network 𝒈𝜃𝑔 (𝑿 , �̂�) and encoder

network 𝒆𝜃𝑒 (𝒙
𝑛) by

min
𝜃𝑔,𝜃𝑒

∑︁

training set

| |𝒈𝜃𝑔 (𝑿𝑝 , 𝒆𝜃𝑒 (𝒙
𝑛)) − 𝒙𝒏𝒑 | |

2
2 .

(2) Denote the latent space vectors obtained from the encoder

above as �̂�𝑛 = 𝒆𝜃𝑒 (𝒙
𝑛). Train stress decoder network𝒉𝜃ℎ (𝑿 , �̂�𝑛)

by

min
𝜃ℎ

∑︁

training set

| |𝒉𝜃ℎ (𝑿𝑝 , �̂�𝑛) − 𝝉𝑛𝑝 | |
2
2 .

(3) Train an affine momentum network 𝒍𝜃𝑙 (𝑿 , �̂�𝑛) by

min
𝜃𝑙

∑︁

training set

| |𝒍𝜃𝑙 (𝑿𝑝 , �̂�𝑛) − 𝑪𝑛𝑝 | |
2
2 .

Here 𝜃∗ denotes network weights. Additional training details and

network architecture are listed in the supplementary material.

If the problem parameter 𝜇 contains information about return

mapping, we can make the stress decoder explicitly depend on 𝜇,

i.e., 𝒉(𝑿 , �̂�, 𝜇).

Together with the three neural networks, we have equipped

ourselves with all ingredients needed to perform one step of MPM

algorithm.

5 REDUCED-ORDER MODEL: DYNAMICS

After training, we can run new simulations by time-stepping in the

latent space L, from �̂�𝑛 to �̂�𝑛+1 . For this, we follow the projection-

based ROM approach by Chen et al. [2023a]. Our projection-based

ROM approach takes three steps: (1) network inference, (2) MPM

time-stepping, and (3) network inversion. The pipeline is shown in

fig. 3. As we will see, since the dimension of the manifold 𝑟 is much

Figure 3: Latent space dynamics. We time-step the latent

space via three steps. Each step involves a small spatial subset

S ⊂ N ⊂ P of the original full-order MPM particles.

much smaller than that of the full order problem |P |, only a small

subset S ⊂ P of particles, which are named sample particles, are

needed to determine �̂� dynamics. Nevertheless, due to the non-local

nature of MPM, time integration of this subset will involve a larger

subsetN ⊂ P, which we refer to as integration particles. Note that

S ⊂ N and 𝑟 ≤ 3|S| < 3|N | ≪ |P|. These sample and integration

particles bear similarities to the cubature points often employed

in reduced-order FEM [An et al. 2008]. Their exact choice will be

deferred to section 5.4.

5.1 Network inference

At timestep 𝑡𝑛, given �̂�𝑛, the states for all initial location 𝑿 ∈ Ω0,

and in particular for the integration particles 𝑝 ∈ N with initial

position 𝑿𝑝 can be obtained by inferencing the neural networks

𝒙𝑛𝑝 = 𝒈(𝑿𝑝 , �̂�𝑛), 𝒗𝑛𝑝 =
1

Δ𝑡
(𝒈(𝑿𝑝 , �̂�𝑛) − 𝒈(𝑿𝑝 , �̂�𝑛−1)),

𝝉𝑛𝑝 = 𝒉(𝑿𝑝 , �̂�𝑛), 𝑪𝑛𝑝 = 𝒍 (𝑿𝑝 , �̂�𝑛).

Note that the particle velocity here is obtained by backward differ-

encing the position field, consistent with the explicit MPM frame-

work.

5.2 MPM time-stepping

One step of the MPM algorithm (section 3.3) is performed on the

integration particles N to advance to 𝑡𝑛+1 . Integrating all the parti-

cles belonging to N guarantees that the states on sample particles

𝒙𝑛+1𝑝 |𝑝∈S are the same as if we perform the full-order MPM on all

particles 𝑝 ∈ P. There is no approximation in this step.

5.3 Network Inversion

With the new particle positions at 𝑡𝑛+1 in hand, we are able to find

the corresponding �̂�𝑛+1 by inverting the neural deformation field,

�̂�𝑛+1 = argmin
�̂�∈R𝑟

∑︁

𝑝∈S

| |𝒈(𝑿𝑝 , �̂�) − 𝒙𝑛+1𝑝 | |22 . (10)

In this optimization problem, both the unknown �̂�𝑛+1 and the num-

ber of summands |S| are significantly reduced. As the latent space

trajectory generally evolves smoothly, with �̂�𝑛 as an initial guess,

eq. (10) can be rapidly solved via the Gauss-Newton method [No-

cedal andWright 1999], converging in 2-3 iterations. We can option-

ally further speed up this nonlinear solver via a first-order Taylor

approximation [Chen et al. 2023a].
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Figure 4: (a) Construction of sample particles and integra-

tion particles; (b) Sample and integration particles across the

domain.

5.4 Construction of Sample and Integration
Particles

The least-squares problem is well-posed provided |S| ≥ 𝑟/3. The

projection will be more accurate if a decent number of sample

particles can reflect the deformation of the geometry. For example,

there should not be a group of sample particles that stand still

in a corner. Moreover, the sample particles can be different (in

terms of both quantities and spatial distributions) at different time

steps. For simplicity, we fix a set of sample particles throughout

[0,𝑇 ] . Currently, we choose sample particles via either user-defined

heuristics (section 6.1 cake cutting) or random sampling (see all

other experiments). Future work may consider further optimizing

the sample particle choices [An et al. 2008].

Once S is chosen, we assemble a group of integration particles

containing just enough information to evolve sample particles to

the next time step. This is done by the following: a. identify the

set of grid nodes relevant to S as I = {all grid nodes 𝑖 : ∃𝑝 ∈

S s.t. 𝑁𝑖 (𝒙𝑝 ) ≠ 0}, b. identify the set of integration particles rele-

vant toI asN = {all particles 𝑝 ∈ P : ∃𝑖 ∈ I s.t. 𝑁𝑖
(

𝒈(𝑿𝑝 ; �̂�𝑛) ≠

0}. An illustration is shown in fig. 4.

6 EXPERIMENTS

We validate the proposed reduced-order framework on a wide range

of elastoplastic examples. The choice of the problem parameter

𝜇 is stated in each experiment. The Experimental statistics are

summarized in table 1.

In addition to visual results, we will also report the total relative

deformation error across space and time,

𝛿 =

√

√

∑

𝑛=1,2,..,𝑁 ,𝑝∈P | |𝒈(𝑿𝑝 , �̂�𝑛) − 𝝓 (𝑿𝑝 , 𝑡𝑛) | |2

∑

𝑛=1,2,..,𝑁 ,𝑝∈P | |𝝓 (𝑿𝑝 , 𝑡𝑛) | |2
. (11)

Throughout this section, datasetD is always split as non-overlapping

Dtrain and Dtest . Neural fields are constructed with Dtrain and val-

idated on Dtest . Furthermore, we will report the dimension reduc-

tion ratio defined by 𝛾 = 3|P |/𝑟 , i.e., the dimension of the full-order

model divided by the latent space dimension. See the supplementary

material for additional details regarding experiments, the training

dataset, generalizability, extrapolation, and elastoplastic models.

Figure 5: After training on low-res simulation (left), our

method can directly infer high-resolution results (right) by

querying the continuous neural deformation field. No addi-

tional post-processing is needed.

6.1 Fracture

One remarkable feature of our neural stress field is its ability to cap-

ture fracture. We first simulate the tearing of a piece of bread with

|P | = 4 × 104 particles governed by pure elasticity under different

Young’s moduli. The problem parameter 𝜇 is the Young’s modulus

of the material. Weak elements are inserted in the middle region

to seed the fracture. Figure 10(a) shows that our method is able

to accurately generate the fracture pattern under various unseen

Young’s moduli. In MPM, numerical fracture happens when two

(or more) sets of particles cannot see each other via the grid, after

which the deformation gradient 𝑭 for the two (or more) fractured

pieces evolve independently. Thus, in this scenario, 𝑭 computed

from
𝜕𝝓
𝜕𝑿 or its approximation

𝜕𝒇
𝜕𝑿 would provide amisleading stress

𝝉 that is not what is being used in the MPM setting. As is shown

in fig. 10(b), the baseline method by Chen et al. [2023a], which

uses 𝝉 ≈ 𝝉 (
𝜕𝒇
𝜕𝑿 ), fails to reconstruct a clean fracture. Our neural

stress field, on the other hand, explicitly equips the reduced-order

model with the bona fide stress 𝝉 that is used in the ground truth

MPM simulation. Here S consists of 450 randomly chosen particles

𝑝 ∈ P, and the total relative deformation error is 𝛿 = 1.2%, as is

defined in eq. (11). The error for the baseline method is 𝛿 = 6.5%.

Our neural stress field is also applicable to fracture with plastic

models, such as von Mises plasticity, as is shown in cake cutting in

fig. 1. Here we adopt the plasticity model in [Wang 2020]. The cake

is simulated with |P | = 2 × 105 particles. A spatula is slicing the

cake at different angles, represented by the problem parameter 𝜇.

We select 700 particles clustered toward the middle and then reduce

the sample size to 400 after 𝑇
2 . The number of integration particles

is 1.35 × 104 on average. The full-order and reduced-order MPM

simulators are both implemented in WARP [Macklin 2022] under

double precision. The neural networks are implemented in PyTorch.

The total wall clock time of the full-order simulation is 14.495𝑠,

while the wall time of our reduced method is 1.417𝑠 . We achieve an

overall speedup of 10.23×with an error of 1.3%. In general, since the

dynamics are constrained to the low-dimensional manifold, we are

also able to take a larger time step (1.5Δ𝑡 .) at deployment time. In

both fracture examples we choose 𝑟 = 6, and 𝛾 = 2×104 and 1×106,

respectively. With our reduced model, we are also able to achieve

considerable memory saving. In this scenario, the average memory

consumption of the full-order MPM model is 1.61G, while ours is

0.79G, including both latent space physics and neural networks.

The computing setup is detailed in the supplementary material.
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Figure 6: Unlike end-to-end ML frameworks that can only

predict particle positions, our first-principal-based reduced-

order approach also matches stress quantitatively.

6.2 Sand plasticity

MPM is particularly suitable for simulating granular media. We

simulate a column of sand falling onto the ground under gravity.

Here 𝜇 represents different friction angles. Our neural stress field

can perfectly capture such a noisy stress distribution and yields

excellent results on Dtest, with an average error of 𝛿 = 0.4%. (See

fig. 11) The ground truth is simulated with |P | = 72, 000 particles,

while we set 𝑟 = 6, 𝛾 = 3.6 × 104 and |S| = 150. The memory

consumption of full-order MPM for this scenario is 0.91G, and that

of our reduced model is 0.65G.

Once trained using a low-resolution simulation, our approach

can arbitrarily boost the resolution with no cost by simply evalu-

ating the neural deformation fields at more 𝑿𝑝 ∈ Ω0. In fig. 5, we

boost the resolution by 100× when running latent space dynamics.

6.3 Metal plasticity

Our neural stress field can also handle history-based plasticity

models, such as the effect of hardening [Wang et al. 2019]. The

squeezing and bouncing back of a metal frame is simulated with

von Mises return mapping under different hardening coefficients

𝜇 = 𝜏𝑌 . In the ground truth simulation, the yield condition is

𝑦 (𝝉 ) < 0, and thus the return mapping is constantly updated to

account for hardening, de facto making the yield condition another

path-based state 𝑦 (·) = 𝑦 (·, 𝑡). Since our neural stress field directly

approximates the stress computed after the return mapping, such

complexity is circumvented. In other words, the hardening state is

implicitly learned by our neural stress field 𝒉. In fig. 12, we compare

our deployment results and ground truth under different hardening

coefficients.A sampling of |S| = 50 particles out of |P | = 49, 978

yields a remarkably small error of 𝛿 = 0.2% averaging over all

testing data, where we choose 𝑟 = 5 and 𝛾 = 29.987. While end-

to-end ML frameworks [Sanchez-Gonzalez et al. 2020] can only

predict particle positions at rollout time, our PDE-based reduced-

order model captures various physical quantities beyond positions.

Indeed, our neural stress field can also accurately predict the stress

distribution, as is shown in fig. 6 Furthermore, we can sample even

fewer points to still obtain reasonably good results. Sampling only

20 particles results in an error of 𝛿 = 0.5%, while sampling merely

30 particles results in an error of 𝛿 = 0.3%, and the results are

almost indistinguishable visually compared with the ground truth.

In addition, with a randomly chosen 30 sample particles, and with

the timestep in deployment set to 1.5Δ𝑡, we are able to speed up

the total wall clock time from 7.83𝑠 in the full-order MPM to 1.55𝑠

in the reduced model, achieving a speedup more than 5 × . In this

Figure 7: Results for different numbers of sampling points

are shown. For this example where the toothpaste is held at

7.1◦, sampling 15 randomly chosen particles yields an error

of 𝛿 = 1.8%, while sampling 30 yields an error of 𝛿 = 0.9%.

Figure 8: A jelly cube hits onto a jelly wall. Our approach

accurately reflects the rotation of the cube. The baseline

approach [Chen et al. 2023b] is much more dissipative since

it does not support angular momentum. The error 𝛿 for our

approach is 0.20%, and for the baseline approach is 16.6%. The

problem parameter 𝜇 represents different initial velocities

of the jelly cube.

setup, the full-order MPM memory consumption is 0.82G, while

ours is 0.51G.

6.4 Non-Newtonian fluids

We simulate a ribbon of toothpaste smeared onto a toothbrush hold-

ing at different angles with |P | = 45, 412 particles (See fig. 13). Here,

the problem parameter represents different boundary conditions,

i.e., toothbrush inclination. We choose 𝑟 = 6, and thus 𝛾 = 22, 706.

We follow the Herschel-Bulkley model in [Yue et al. 2015]. With

just 50 sampling points, we can predict the dynamics of toothpaste

with an averaging total relative deformation error 𝛿 = 0.6%. Further,

the sample size can be even reduced without too much discount on

the overall visual quality. As is shown in fig. 7, with only 30 points,

the deployment result still looks reasonably good, with an error of

𝛿 = 0.9%.

6.5 Rotation and Collision

We simulate a collision scenario that yields salient rotation (fig. 8)

with |P | = 104 particles. With a manifold dimension of 𝑟 = 5 and

|S| = 50 sample particles, our approach is able to accurately cap-

ture the rotational dynamics. The baseline approach, nevertheless,

suffers from noticeable artifacts due to its flawed representation of

stress and affine fields. Our approach can also phonograph complex
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Table 1: Simulation and reduction statistics.

Scene Figure Model Δ𝑡 Δ𝑥 # of particles Elasticity/Plasticity dim(L) MLP size for 𝒈,𝒉, and 𝒍, respectively Error

Bread 10 Fixed corotated elasticity 0.001 0.0063 40,000 𝐸 ∈ [1.0, 13.0] 𝑟 = 6 (5, 48 · 3), (5, 64 · 6), (5, 64 · 9) 1.2%

Cake 1 von Mises with softening 0.0016 0.0063 200,000 𝜏𝑦 = 0.1, 𝜃 = 0.03 𝑟 = 6 (5, 48 · 3), (5, 64 · 6), (5, 64 · 9) 1.3%

Sand 11 5 Drucker-Prager 0.002 0.0067 71,363 𝜙 𝑓 ∈ [20◦, 40◦ ] 𝑟 = 6 (5, 48 · 3), (5, 72 · 6), (5, 72 · 9) 0.4%

Metal 12 6 von Mises with hardening 0.0015 0.01 49,978 𝜏𝑌 = 0.05, 𝜉 ∈ [0.0, 0.2] 𝑟 = 5 (5, 32 · 3), (5, 48 · 6), (5, 48 · 9) 0.2-0.5%

Toothpaste 13 7 Herschel-Bulkley 0.001 0.0063 21,811 𝜏𝑌 = 0.05, 𝜂 = 0.17 𝑟 = 6 (5, 32 · 3), (5, 48 · 6), (5, 48 · 9) 0.6-1.8%

Jelly cube 8 Fixed corotated elasticity 0.01 0.02 10,000 𝐸 = 1.0 𝑟 = 5 (5, 32 · 3), (5, 64 · 6), (5, 64 · 9) 0.2%

Squishy ball 9 Fixed corotated elasticity 0.002 0.0067 97,857 𝐸 = 40.0 𝑟 = 6 (5, 48 · 3), (5, 64 · 6), (5, 72 · 9) 0.2%

Figure 9: An elastic squishy ball falls onto an inclined plane.

Compared with the baseline approach [Chen et al. 2023b],

our approach accurately captures both the self-contact and

the rotation. The error 𝛿 for our approach is 0.19%, and for the

baseline approach is 4.7%. 𝜇 represents different inclinations

of the plane.

contact scenarios (fig. 9). We simulate an elastic squishy ball falling

onto an inclined plane with |P | = 105 particles. The manifold di-

mension is set to 𝑟 = 6. A randomly selected set of |S| = 300 sample

particles suffices to delineate the contact of tentacles. The baseline

method performs poorly as the affine momentum is missing, and

the representation of stress is inaccurate in extreme contact. Notice

that we do not need to sample all tentacles to capture their motion;

rather, a small S is used to determine �̂� in the latent space so that

our neural deformation and neural stress field can generate their

motion. The error 𝛿 for either of the above experiments is less than

0.2%. The dimension reduction ratios are 6, 000 and 5 × 104.

7 DISCUSSIONS AND FUTUREWORK

We proposed Neural Stress Fields (NSF), a novel, reduced-order

framework for elastoplastic and fracture simulations. NSF signif-

icantly alleviates the computational burden of simulating com-

plex elastoplasticity and fracture effects by training a unified, low-

dimensional latent space for the neural deformation, stress, and

affine fields. Following the training phase, we efficiently conserve

computational resources by leveraging these low-dimensional la-

tent variables for evolution. Our approach sets a compelling prece-

dent for multiple potential research trajectories.

Generalization Our work supports both interpolation and ex-

trapolation of the training data (see experiments on sand friction

angles and bread weak elements). Nevertheless, our approach can-

not handle extremely out-of-distribution extrapolation. We trade

aggressive generalizability for massive compression and speedup.

Future work may consider exploring alternative balancing between

generalizability and performance. In addition, for each experiment,

we train a network using data from this particular scenario [Sifakis

and Barbic 2012]. An exciting future direction is training on one

scenario but generalizing to multiple materials and objects.

Training time Currently, training time is long, between 2hrs

and 20hrs. Our target applications are cases where the model would

be re-used multiple times. For example, after training, our model

can be deployed in VR and gaming applications, where millions

of users will interact with it. In these cases, training time is not

the main bottleneck. That said, improving training time will help

capture larger scenes and accelerate development cycles.

High-frequency neural fields.MPM simulations often involve

stress fields with high-frequency details and large spatial variations.

In practice, we find it challenging to train neural fields that correctly

capture these distributions, preventing us from capturing larger

scenes. Futureworkmay consider developingmore advanced neural

architectures [Sitzmann et al. 2020; Tancik et al. 2022] to improve

performance when high-frequency details are presented.

Path-dependent plasticity. Our latent space vector �̂�𝑡 is only

determined by the position 𝒙𝑡 . Nevertheless, since plasticity is path-

dependent [Borja 2013], the same position field does not imply the

same stress field. For instance, if a 1D spring represented by one

point is stretched so that it yields and then squeezed back to the

original position, its stress would have changed as the spring expe-

riences permanent plastic deformation. A potential fix to this issue

would be to, instead of training two distinct networks, concate-

nate 𝒙 and 𝝉 and train 𝒈(𝑿𝑝 , 𝒆( [𝒙𝑛,𝝉𝑛])) ≈ [𝒙𝑛𝑝 ,𝝉
𝑛
𝑝 ] . In addition,

to more explicitly enforce history dependency, future work may

consider evolving the latent space according to both stress updates

and deformation updates.

Data-free training. Sharp et al. [2023] introduces a data-free

reduced-order modeling framework by incorporating a physics-

informed loss term. Extending it to include MPM’s plasticity and

fracture phenomena is another exciting direction.
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Figure 10: Tear a piece of bread. Our method accurately cap-

tures the tearing behavior at different elastic moduli. Due

to a lack of accurate stress representation and the inaccu-

rate deformation gradients computed from neural fields, the

baseline approach by [Chen et al. 2023a] fails to capture the

fracturing behavior.

Figure 11: Simulate column collapse for sand under varying

friction angles.

Figure 12: Our neural stress field can capture the hardening

effect under different hardening coefficients

Figure 13: A ribbon of toothpaste is smeared onto a tooth-

brush held at different angles. The four subplots show our

deployment results with 50 sample points. The correspond-

ing ground truth is shown in the top right corner of each

subplot.
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