
Computational Visual Media
https://doi.org/10.1007/s41095-017-0100-x Vol. 4, No. 1, March 2018, 33–42

Research Article

Robust edge-preserving surface mesh polycube deformation

Hui Zhao1, Na Lei2,5(�), Xuan Li3, Peng Zeng1, Ke Xu4, and Xianfeng Gu3

c© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Polycube construction and deformation
are essential problems in computer graphics. In
this paper, we present a robust, simple, efficient,
and automatic algorithm to deform the meshes of
arbitrary shapes into polycube form. We derive a
clear relationship between a mesh and its corresponding
polycube shape. Our algorithm is edge-preserving, and
works on surface meshes with or without boundaries.
Our algorithm outperforms previous ones with respect
to speed, robustness, and efficiency. Our method is
simple to implement. To demonstrate the robustness
and effectivity of our method, we have applied
it to hundreds of models of varying complexity
and topology. We demonstrate that our method
compares favorably to other state-of-the-art polycube
deformation methods.

Keywords deformation; polycube topology; polycube
geometry; stretching energy

1 Introduction

Polycubes are special geometric shapes, whose face
normals are aligned with the one of the six axis
directions of a prescribed orthonormal coordinate
frame. A polycube may be used to capture overall

1 Tsinghua University, Beijing 100084, China. E-
mail: H. Zhao, alanzhaohui@qq.com; P. Zeng,
zengp16@mails.tsinghua.edu.cn.

2 Dalian University of Technology, Dalian 116620, China.
E-mail: nalei@dlut.edu.cn (�).

3 State University of New York at Stony Brook, NY 11974,
USA. E-mail: X. Li, xuanli@cs.stonybrook.edu; X. Gu,
gu@cs.stonybrook.edu.

4 Beijing University of Technology, Beijing 100124, China.
5 Key Laboratory for Ubiquitous Network and Service

Software of Liaoning Province, China.
Manuscript received: 2017-08-19; accepted: 2017-11-08

and global shape features of a mesh, and remove its
local details.

The idea of a polycube was first proposed
in Ref. [1] to extend cube mapping to general
shapes. These special shapes generalize geometry
images [2], and allow geometry and texture
to be stored efficiently. Due to their highly
regular structure and special global parametric
domain, polycubes are useful in many graphics
applications, such as surface texturing [1],
volume texturing [3], parameterization [4, 5],
reconstruction [6], hexahedral remeshing [7–10],
shape morphing [11], spline construction [6, 12],
volumetric mapping [13, 14], and T-mesh
construction [15].

Constructing polycube shapes from meshes is a
challenging problem. In early works, polycube
meshes were constructed manually [1, 5], which needs
a lot of tedious, labor-intensive user interaction
requiring great care. After the polycube has been
constructed, another extra algorithm was needed
to determine the cross-surface map between the
polycube and the mesh [12]. Determining this map is
also a challenging problem in itself [6]. If we change
the polycube, we need to rebuild the map.

In this paper, we propose a novel, automatic
polycube deformation algorithm which can be
applied to a surface mesh. Our method separates
the polycube construction process into three explicit
components: segmentation, polycube topology
determination, and polycube geometry construction.
Our major contribution is to the polycube geometry
step. We propose a deformation method based on
face normal rotation. The technique we implement
can process all kinds of meshes, of varying genus,
orientated or non-orientated, and with or without
boundaries. Compared to previous methods, our
algorithms is more efficient, robust, fast, accurate

33



34 H. Zhao, N. Lei, X. Li, et al.

and can deform a mesh with complicated geometry
and arbitrary topology into a corresponding
polycube. Pre-processing and post-processing
are not required, and there are no topological
degeneracies in our experimental results. As the
polycubes are resulted by deforming the original
meshes, we automatically determine a direct cross-
surface parameterization between the meshes and
their corresponding polycube shapes.

2 Related work

Recently, some automatic polycube construction
algorithms have been proposed in Refs. [7, 16–
18]. The authors use a segmentation method to
patch the input mesh, then use box-primitives
to approximate it coarsely in Ref. [18], but this
method fails for complicated models. The method in
Ref. [18] applies distance-based, divide-and-conquer
algorithms to build the polycube, while the one
in Ref. [16] generates over-refined polycubes and
is sensitive to off-axis features. The algorithms in
Refs. [16, 18] are based on surface meshes and can not
build the cross-surface map automatically. While the
algorithms in Refs. [7, 17] are volume-mesh-based,
they look for the specific polycube which minimizes
the distortion of the volumetric map.

A polycube is an axis aligned shape which
mimics the original shape, but with the geometric
characterization that each of its face normals is
aligned with one of the axes of a given orthonormal
coordinate frame. Therefore, the value of the `1-
norm of every unit face normal of the polycube
shape is equal to 1 [17]. Based on this observation,
Ref. [17] defines an `1-norm energy which is weighted
by triangle area, then proposes a variational method
to deform an input triangle mesh into a polycube
shape by minimization of this energy. The `1-norm
term of the mesh’s face normals, and the weight
term of triangle areas are both non-linear in mesh
position. The authors change the unconstrained
system into a constrained minimization problem to
make it well-behaved, numerically tractable, and
efficient. Finally, a complicated numerical method
is resorted to solve the minimization problem in
Ref. [17]. To decrease distortion, a volumetric mesh
is created from the surface mesh, then an as-rigid-
as-possible volumetric distortion energy [19] is used

to regularize the system. There are many minima of
the deformation energy, so a regularization approach
is also used to single out the desired polycube [17].

Because the polycube results differ according to
axis orientation, the authors also introduce an energy
term to find the optimal global orientation for the
polycube. This energy is integrated into their whole
system. However, the optimal polycube over all
orientations is an ill-defined concept. We do not
think there should be an optimal polycube.

The polycubes resulting from the above approach
often have spurious topological degeneracies. A post-
processing cleanup step is used to fix the problem in
Ref. [17].

Their method also requires that the input mesh is
closed, while our method can process meshes with
open boundaries.

The method in Ref. [7] aims to align the
surface normals of an input mesh with one of
six axes (±X,±Y,±Z) gradually, in a step called
rotation-driven deformation. However the result
is not a perfect polycube and a second position-
driven deformation is required to exactly align each
polycube face with the corresponding axis, and to
enforce planarity. Our method is similar to theirs,
but our algorithms use different methods to compute
rotations. As a result, our results converge to planar
faces and we do not need post-processing steps.

The algorithm in Ref. [20] requires an existing
polycube, which they then optimize to meet a
desired quality. The method in Ref. [9] attacks
the polycube segmentation problem using a graph-
cut-based approach to achieve a polycube base-
complex which satisfies certain quality requirements.
The algorithms balance parameterization distortion
against the number of singularities of the polycube.
We use the same segmentation step as theirs [9,
21], but suggest a different polycube geometry
deformation method from theirs.

Another polycube method similar to ours is given
in Ref. [21]. Their algorithm is also a normal-
driven method. Given a polycube with complicated
topology, a simplification method is proposed in
Ref. [22].

Poisson-system-based deformation [23] is a well-
known technique. After rotations of all triangle
faces have been determined, the triangles can be
rotated into the new orientation, and then a Poisson



Robust edge-preserving surface mesh polycube deformation 35

system is used to blend the triangle soup together
and reconstruct a consistent mesh into its new
shape. The rotations can be computed according
to application needs. In Ref. [24], the rotation
is achieved by interpolation from two meshes in
correspondence. In Ref. [25], rotations of the
triangles are interpolated.

3 Algorithms

3.1 Preliminaries

A polycube is a shape formed by joining several
rectangular faces together in such a way that the
surface normals of the polycube are axis-aligned.
A polycube has also been called an orthogonal
polyhedron [9, 26]. We observe that there are three
steps in deforming a mesh into a corresponding
polycube shape: segmentation, polycube topology
determination, and polycube geometry construction.

These three steps can be made independent of each
other. The first step divides a mesh into several
different charts. The second step determines the
polycube topology of the mesh, and the third step
fixes the polycube geometry. Figure 1 shows two
models which are segmented into parts in the second
column. Using the parts, each model’s polycube
topology is found as shown in the third column,
and finally our algorithm obtains an exact polycube
geometry as shown in the last column. Many
previous algorithms combine these two or three steps
into one. Our algorithm separates them explicitly.
In this paper, we focus on the polycube geometry
construction step. Given a model with a valid
polycube topology, found, e.g., using the method in
Ref. [21], our algorithm produces a final shape with

original segmentation topology geometry

Fig. 1 Segmentation, polycube topology determination, and
geometry construction.

perfect polycube geometry.
In the first step, the whole mesh is separated into

several charts with monotone chart boundaries [9].
Finding necessary conditions on the segmentation
to guarantee a valid polycube is still an open
problem [26]. However there are three sufficient
conditions [26]:

a) each single patch of the polycube has at least
four other neighboring charts;

b) two neighboring polycube patches must not
have opposite labels;

c) the valence of every polycube vertex must be
three.

In this paper, we use the same validated
polycube topology data as Ref. [21] for purposes of
experimental comparison.

In the segmentation step, we must guarantee that
there are only three parts which meet at each point
to satisfy the third topological requirement. The
PolyCut method in Ref. [9] can be applied to perform
this step.

3.2 Polycube topology

The second step determines the polycube topology.
After segmentation of the mesh, this step labels or
associates each triangle with one of six axis directions
(+X,−X,+Y ,−Y ,+Z,−Z), as in Fig. 1, where the
six different colors represent these directions.

A valid polycube topology assigns a target normal
to every triangle face, and divides the whole mesh
into patches in which all triangles have the same
target normal. Our algorithm rotates all triangles to
their corresponding target normal directions. There
are no explicit constraints between patches. Every
patch is independently rotated. However there are
implicit global topological constraints between them
due to the polycube topology.

If the same model is assigned several different
polycube topologies, this will lead to different
polycube shapes. In Figs. 2 and 3, we demonstrate
this conclusion. The first and the third columns
of Fig. 2 show the same “bimba” model, but with
different polycube topologies, and the second and
the last columns are their corresponding polycube
shapes.

3.3 Polycube geometry

3.3.1 Approach
The second step aligns and reorients the triangles in



36 H. Zhao, N. Lei, X. Li, et al.

topology 1 polycube 1 topology 2 polycube 2

Fig. 2 A model with two different polycube topologies.

topology 1 polycube 1 topology 2 polycube 2

Fig. 3 Another model with two different polycube topologies.

each chart with one axis direction. Every chart
should be mapped into a planar rectangle and all
chart boundaries should be straight lines.

When creating a polycube from a mesh, we
wish the parameterization distortion to be low.
At the same time, the numbers of singularities,
i.e., chart corners, and of charts, should be
kept low. The polycube construction algorithm
should provide an optimal trade-off between
parametrization distortion, and numbers of charts
and singularities.

Our polycube geometry method is based on a
Poisson system which reconstructs the deformed
polycube mesh to satisfy the currently assigned
face normals of the triangles. As the Poisson
system can only approximate the input normal
requirements, we use an iterative Poisson system.
After several iterations, our system converges and
outputs a corresponding polycube shape whose patch
boundaries are necessarily straight; the triangles in
each chart fall on a plane automatically without the
need for any extra planarity constraints.

Changing a model into its corresponding polycube
shape is fundamentally a surface deformation
process. Previous deformation algorithms [27–30]
focus on preserving the local features of the original
model as well as possible. We suggest that the target
of the deformation should be to preserve the metric
instead of local features.

In Ref. [30], the deformation energy is separated
into two explicit kinds of energy, stretching energy
and bending energy. The former tries to preserve
the metric, while the latter preserves the mean

curvatures. Motivated by their explanation, our
algorithm adopts and modifies their stretching
energy under the constraints of the target normal
direction of every triangle of the polycube topology.
In their original method, the rotations of faces
are unknown variables which are changed at every
iterative step, but in our approach, the rotations
are known in advance and kept the same in each
iteration. In theory, our deformation does preserve
the metric, but in practice we observe small changes
in edge lengths.
3.3.2 Details
Let S be an original surface and S′ be a deformed
version of it, embedded in 3-dimensions. Let xv be a
3-vector which is the position associated with vertex
v of S, while x′

v corresponds to vertex v in S′. On
every triangle of the mesh, we define a 3×3 rotation
matrix variable R(t). The stretching energy [30] is
defined as
E(x′, R) =

∑
hevw

cot(avw)‖(x′
v − x′

w)−R(tvw)(xv − xw)‖2

(1)
In the above, ‖ · ‖2 is the standard 3-vector norm,
hevw represents the half edge from the vertex v to w.
The angle of the triangle opposite to half edge hevw is
denoted avw. Finally R(tvw) represents the rotation
matrix associated with the triangle face containing
half edge hevw.

It is proved in Ref. [30] that E(x′) measures the
quantity:∫

S
[(σ1(p)− 1)2 + (σ2(p)− 1)2 ]dAg(p) (2)

where σ1(p) and σ2(p) represent the the maximum
and minimal stretching ratios of a tangent vector of S
at a point p under the differential mapping dx′ from
S toR3, respectively. Therefore E(x′) is a reasonable
quantity to measure the stretching of a deforming
surface.

This stretching energy is quadratic in x′ given a
fixed rotation matrix R over each triangle. Taking
the gradient of the stretching energy and setting it
to zero, we can obtain the optimal values of the
variables x′ by solving a single linear system:∑
w∈N(v)

[
cot(avw) + cot(awv)

]
(x′

v − x′
w)

=
∑

w∈N(v)

[
cot(avw)R(tvw)− cot(awv)R(twv)

]
(xv − xw)

(3)



Robust edge-preserving surface mesh polycube deformation 37

By defining the 3-vector at vertex v as
bv =

∑
w∈N(v)

[
cot(avw)R(tvw)+cot(awv)R(twv)

]
(xv−xw)

(4)
we can represent the above system in matrix format
as

Lx′ = b (5)

where L is the n× n Laplacian matrix, and x′ and b
are n× 3 matrices.
3.3.3 Rotation of each triangle
In the above system, we need to know the rotation
matrix for every triangle of the mesh. Although
we do not know the exact vertex positions of
the polycube in advance, the face normals of the
polycube are determined and fixed by the polycube
topology. Therefore we can calculate the rotation
matrix for every triangle, from its unit normal
on the original mesh and the target normal from
its polycube topology, without knowing the target
polycube shape (the rotation can be computed by
Rodrigues’ formula).
3.3.4 Iteration
A Poisson system provides an approximation
method: the system in Eq. (5) cannot result in an
exact polycube, of the kind shown in Fig. 4. We fix
the problem with an iterative method. In every step
i, we recompute the rotation matrix Ri(t) for triangle
t from the face normal of the current model and the
target normal given by the polycube topology. Using
the new Ri(t), we update the Li and bi. On each
iteration the system to be solved is

Lix
′
i = bi (6)

Figure 4 demonstrates the iterative process of
polycube deformation. We observe that the polycube
shapes get better and better after each iteration;
planarity and straightness of the polycube edges are
realized upon convergence of the iterations. In these
experiments, the polycube shape in the fifth step is
almost the same as the one after the hundredth step.
Therefore the speed of convergence of our polycube
deformation method is very fast. In practice, the
speed varies according to the model.

The stretching energy defined in Eq. (1) can
measure the stretching ratio if it is a function of
both rotation R and unknown position vectors x′.
In our framework, we fix the variable R, so our
system is only a function of unknown position vectors

original 1 iteration 2 iterations

3 iterations 4 iterations 150 iterations

Fig. 4 Iterations of polycube deformation for two models.

x′. Therefore our method does not minimize the
stretching energy, but is a simple Poisson system.
The explanation of “stretching energy” in Ref. [30]
gives us a hint as to why our simple Poisson system
does not change edge lengths much in practice.

4 Results and demonstrations

4.1 Evaluation

We have tested our method in a variety of
meshes with complicated topology, with and without
boundaries. Our experiments demonstrate that our
algorithms can work on all kinds of shapes.

In Fig. 5, we show several models and their
polycube shapes. It shows that our algorithm can
obtain perfect polycubes no matter how complex the



38 H. Zhao, N. Lei, X. Li, et al.

man elephant gargoyle

isidorehorse dino hand

Fig. 5 Six models and their polycube shapes.

model shapes.
Polycubes are also affected by the genus of the

models. The technique we propose can manipulate
models with high genus directly, as shown in Figs. 13
and 14, which demonstrates the robustness of our
algorithm for varying mesh topologies.

Our method is insensitive to the presence of
boundaries. Figure 6 shows some meshes with
boundaries and their polycubes. As there are only
implicit constraints on polycube topology, the edges
on the boundary are not deformed into the straight
lines.

Our algorithm can also deform non-orientable
meshes successfully. In Fig. 7, the well-known

Fig. 6 Models with boundaries, and their polycube shapes.

costa polycube

Fig. 7 The “costa” non-orientable surface and its polycube.

“costa” surface mesh is deformed into a polycube.
After determining the segmentation and polycube
topology, the PolyCut method [9] also uses a
deformation algorithm to obtain polycube geometry.
Their deformation is based on vertex normal
rotations, unlike ours, in which rotations are applied
to face normals. As a result, their method and the
algorithm in Ref. [21] can not process non-orientable
surfaces, or meshes with boundaries.

The algorithm we present is also robust to
polycube topological defects. When the polycube
topology is not valid, our method can still process
the model and output a polycube-like shape with
the same polycube topological defects. In Fig. 8,
two models with and without topological defects are
shown in the first and third columns respectively.
Corresponding polycube deformation results are
displayed in the second and fourth columns.

4.2 Comparison

Many recent algorithms [17] cannot guarantee to

Fig. 8 Polycube deformations with and without polycube
topological defects.



Robust edge-preserving surface mesh polycube deformation 39

obtain a perfect polycube shape without topological
defects, an exception being the method proposed in
Ref. [21]. In this part, we compare our method
with the latter. We use the same models, the
same segmentation charts, and the same polycube
topologies as used in Ref. [21]. We ran these
algorithms on a hundred of models, and exhibit
several results in Figs. 9 and 10.

Our algorithm just solves several linear systems, so
is faster than theirs. The polycube shapes from both
algorithms are almost the same. However the area
and shape of each polycube face are slightly different.

We compute the edge and area errors for each
model for our and their polycube results. The error
ratios for one hundred models for the two methods
are displayed in Figs. 11 and 12. We can conclude
that our algorithm preserves edges and areas much
better than the method in Ref. [21].

5 Conclusions and future work

This paper has presented a robust, efficient polycube
deformation algorithm. Our method is based on
explicitly separating the whole process into three
steps. Each step can be performed with a variety
of methods. Our method outperforms previous ones
in terms of speed, robustness, simplicity, diversity,
and quality. Although this deformation technique

fandisk Ref. [21] ours

Fig. 9 Polycubes produced by the method in Ref. [21] and our
method.

woodenfish Ref. [21] ours

Fig. 10 Polycubes produced by the method in Ref. [21] and our
method.

Fig. 11 Edge errors for our algorithm and the method in Ref. [21].

Fig. 12 Area errors for our algorithm and the method in Ref. [21].

Fig. 13 Models of high genus and their polycube shapes.

Fig. 14 Models of high genus and their polycube shapes.

leads to a direct cross-map between original mesh
and its polycube, we can not guarantee that the map
is bijective, or one-to-one. In future, we plan to add
further constraints to the polycube geometry step to
obtain a bijective map.

Quadrangulation and hexahedral meshing from
a surface mesh are crucial problems in computer
graphics, and our method shows promise for such



40 H. Zhao, N. Lei, X. Li, et al.

Fig. 15 Gallery of our polycube deformations.

applications.

Acknowledgements

We wish to thank the anonymous reviewers for
encouragement and thoughtful suggestions. We are
grateful for Prof. Steven J. Gortler for motivation
and insightful guidance which made this paper
possible. We also thank Yue Li for help in our
experiments. The mesh models are courtesy of the
Aim@Shape Repository, the Stanford 3D Scanning
Repository and Ref. [21]. We used Mitsuba [31] for
rendering images. Our algorithms were implemented
using the MeshDGP [32] framework. We also
thank the Libigl team [33] for reference. The
project was partially supported by NSFC 61772105,
61720106005, and 11271156, NSF DMS-1418255,
and AFOSR FA9550-14-1-0193.

References

[1] Tarini, M.; Hormann, K.; Cignoni, P.; Montani, C.
PolyCube-maps. ACM Transactions on Graphics Vol.

23, No. 3, 853–860, 2004.
[2] Gu, X.; Gortler, S. J.; Hoppe, H. Geometry images.

ACM Transactions on Graphics Vol. 21, No. 3, 355–
361, 2002.

[3] Chang, C.-C.; Lin, C.-Y. Texture tiling on 3D
models using automatic polycube-maps and Wang
tiles. Journal of Information Science and Engineering
Vol. 26, No. 1, 291–305, 2010.

[4] Garcia, I.; Xia, J.; He, Y.; Xin, S.-Q.; Patow,
G. Interactive applications for sketch-based editable
polycube map. IEEE Transactions on Visualization
and Computer Graphics Vol. 19, No. 7, 1158–1171,
2013.

[5] Yao, C.-Y.; Lee, T.-Y. Adaptive geometry image.
IEEE Transactions on Visualization and Computer
Graphics Vol. 14, No. 4, 948–960, 2008.

[6] Wang, H.; Jin, M.; He, Y.; Gu, X.; Qin, H.
User-controllable polycube map for manifold spline
construction. In: Proceedings of the 2008 ACM
Symposium on Solid and Physical Modeling, 397–404,
2008.

[7] Gregson, J.; Sheffer, A.; Zhang, E. All-hex mesh
generation via volumetric polycube deformation.
Computer Graphics Forum Vol. 30, No. 5, 1407–1416,
2011.

[8] Han, S.; Xia, J.; He, Y. Hexahedral shell mesh
construction via volumetric polycube map. In:
Proceedings of the 14th ACM Symposium on Solid and
Physical Modeling, 127–136, 2010.

[9] Livesu, M.; Vining, N.; Sheffer, A.; Gregson,
J.; Scateni, R. PolyCut: Monotone graph-cuts
for PolyCube base-complex construction. ACM
Transactions on Graphics Vol. 32, No. 6, Article No.
171, 2013.

[10] Xia, J.; He, Y.; Yin, X.; Han, S.; Gu, X. Direct-
product volumetric parameterization of handlebodies
via harmonic fields. In: Proceedings of the Shape
Modeling International Conference, 3–12, 2010.

[11] Fan, Z.; Jin, X.; Feng, J.; Sun, H. Mesh morphing
using polycube-based cross-parameterization.
Computer Animation and Virtual Worlds Vol. 16,
Nos. 3–4, 499–508, 2005.

[12] Wang, H.; He, Y.; Li, X.; Gu, X.; Qin, H. Polycube
splines. Computer-Aided Design Vol. 40, No. 6, 721–
733, 2008.

[13] He, Y.; Yin, X.; Luo, F.; Gu, X. Harmonic
volumetric parameterization using green’s functions on
star shapes. In: Proceedings of the Symposium on
Geometry Processing, 2008.

[14] Li, X.; Guo, X.; Wang, H.; He, Y.; Gu, X.; Qin,
H. Harmonic volumetric mapping for solid modeling
applications. In: Proceedings of the 2007 ACM
symposium on Solid and Physical Modeling, 109–120,
2007.



Robust edge-preserving surface mesh polycube deformation 41

[15] Liu, L.; Zhang, Y.; Liu, Y.; Wang, W. Feature-
preserving T-mesh construction using skeleton-based
polycubes. Computer-Aided Design Vol. 58, 162–172,
2015.

[16] He, Y.; Wang, H.; Fu, C.-W.; Qin, H. A divide-
and-conquer approach for automatic polycube map
construction. Computers & Graphics Vol. 33, No. 3,
369–380, 2009.

[17] Huang, J.; Jiang, T.; Shi, Z.; Tong, Y.; Bao, H.;
Desbrun, M. l1-based construction of polycube maps
from complex shapes. ACM Transactions on Graphics
Vol. 33, No. 3, Article No. 25, 2014.

[18] Lin, J.; Jin, X.; Fan, Z.; Wang, C. C. L.
Automatic polycube-maps. In: Advances in Geometric
Modeling and Processing. GMP 2008. Lecture Notes
in Computer Science, Vol. 4975. Chen, F.; Jüttler, B.
Eds. Springer, Berlin, Heidelberg, 3–16, 2008.

[19] Alexa, M.; Cohen-Or, D.; Levin, D. As-rigid-as-
possible shape interpolation. In: Proceedings of the
27th Annual Conference on Computer Graphics and
Interactive Techniques, 157–164, 2000.

[20] Wan, S.; Yin, Z.; Zhang, K.; Zhang, H.; Li,
X. A topology-preserving optimization algorithm for
polycube mapping. Computers & Graphics Vol. 35,
No. 3, 639–649, 2011.

[21] Fu, X.-M.; Bai, C.-Y.; Liu, Y. Efficient volumetric
polycube-map construction. Computer Graphics
Forum Vol. 35, No. 7, 97–106, 2016.

[22] Cherchi, G.; Livesu, M.; Scateni, R. Polycube
simplification for coarse layouts of surfaces and
volumes. Computer Graphics Forum Vol. 35, No. 5,
11–20, 2016.

[23] Yu, Y.; Zhou, K.; Xu, D.; Shi, X.; Bao, H.; Guo, B.;
Shum, H.-Y. Mesh editing with poisson-based gradient
field manipulation. ACM Transactions on Graphics
Vol. 23, No. 3, 644–651, 2004.

[24] Xu, D.; Zhang, H.; Wang, Q.; Bao, H. Poisson shape
interpolation. Graphical Models Vol. 68, No. 3, 268–
281, 2006.

[25] Zayer, R.; Rössl, C.; Karni, Z.; Seidel, H.-P. Harmonic
guidance for surface deformation. Computer Graphics
Forum Vol. 24, No. 3, 601–609, 2005.

[26] Eppstein, D.; Mumford, E. Steinitz theorems for
orthogonal polyhedra. In: Proceedings of the 26th
Annual Symposium on Computational Geometry, 429–
438, 2010.

[27] Chao, I.; Pinkall, U.; Sanan, P.; Schröder, P. A
simple geometric model for elastic deformations. ACM
Transactions on Graphics Vol. 29, No. 4, Article No.
38, 2010.

[28] Botsch, M.; Sorkine, O. On linear variational
surface deformation methods. IEEE Transactions on
Visualization and Computer Graphics Vol. 14, No. 1,
213–230, 2008.

[29] Sorkine, O.; Alexa, M. As-rigid-as-possible surface
modeling. In: Proceedings of Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing,
109–116, 2007.

[30] Zhao, H.; Gortler, S. J. A report on shape deformation
with a stretching and bending energy. arXiv preprint
arXiv:1603.06821, 2016.

[31] Jakob, W. Mitsuba renderer. 2010. Available at
http://www.mitsuba-renderer.org.

[32] Zhao, H. MeshDGP: A C Sharp mesh
processing framework. 2016. Available at http://
meshdgp.github.io/.

[33] Jacobson, A.; Panozzo, D.; Schüller, C. libigl:
A simple C++ geometry processing library. 2016.
Available at http://libigl.github.io/libigl/.

Hui Zhao received his M.Phil.
degree from the Computer Science and
Engineering Department at Hong Kong
University of Science and Technology
in 2007. He was a visiting scholar
in Harvard University from 2015 to
2016. He has developed mesh processing
software (MeshDGP) and published five

books on computer graphics.

Na Lei is currently a professor at
the DUT-RU International School of
Information Sciences and Engineering
at Dalian University of Technology.
She was a visiting professor at the
University of Texas at Austin from 2007
to 2008, at the State University of
New York at Stony Brook from 2014

to 2015 and at Tsinghua University from 2015 to 2016.
Her research interests include computational geometry,
computer graphics, and computer vision.

Xuan Li received his B.Sc. degree
from the Department of Mathematical
Sciences at Tsinghua University. He
is pursuing his Ph.D. degree in the
Department of Computer Science at
Stony Brook University. His research
interests are in computational conformal
geometry and computer graphics.

Peng Zeng received his bachelor degree
from the Mathematics Department at
Jilin University in 2016. He is
currently a Ph.D. student in the
Yau Mathematical Sciences Center
at Tsinghua University. His current
research focuses on computational
conformal geometry, Teichmuller

theory, 3-manifolds, and computer graphics.



42 H. Zhao, N. Lei, X. Li, et al.

Ke Xu is an undergraduate student
at Beijing University of Technology and
is interested in computer graphics and
rendering.

Xianfeng Gu received his Ph.D.
degree in computer science from
Harvard University in 2003. He is an
associate professor of computer science
and the director of the 3D Scanning
Laboratory at Stony Brook University.
His current research interests include
computer vision, graphics, geometric

modeling, and medical imaging. His major works include
global conformal surface parameterization in graphics,
tracking and analysis of facial expression in vision,

manifold splines in modeling, brain mapping and virtual
colonoscopy in medical imaging, and computational
conformal geometry. He won a U.S. National Science
Foundation CAREER Award in 2004.

Open Access The articles published in this journal
are distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the
original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes
were made.

Other papers from this open access journal are available free
of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.


