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In this paper, we introduce discrete Calabi flow to the graphics research community and 
present a novel conformal mesh parameterization algorithm. Calabi energy has a succinct 
and explicit format. Its corresponding flow is conformal and convergent under certain 
conditions. Our method is based on the Calabi energy and Calabi flow with solid theoretical 
and mathematical base. We demonstrate our approach on dozens of models and compare 
it with other related flow based methods, such as the well-known Ricci flow and conformal 
equivalence of triangle meshes (CETM). Our experiments show that the performance of our 
algorithm is comparably the same with other methods. The discrete Calabi flow in our 
method provides another perspective on conformal flow and conformal parameterization.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we present a novel conformal flow-based method for conformal mapping. Our method is based on discrete 
Calabi energy and Calabi flow (Chen and He, 2008; Ge, 2012, 2018; Ge and Xu, 2016). Discrete Calabi flow is inspired by 
discrete Ricci flow (Chow et al., 2003; Luo, 2004; Jin et al., 2007a; Zhang et al., 2014), it is also a conformal flow which 
preserves the angles. Conformal parameterization can keep the shape of the original mesh and is especially useful in all 
kinds of applications.

Mesh mapping and parameterization are crucial operations in computer graphics modeling. Researchers have designed a 
lot of different algorithms in the past twenty years. One of the important applications of mesh parameterization is texturing 
which assigns a 2D image onto a 3D mesh surface, another one is remeshing.

Given a 3D mesh, the parameterization looks for a corresponding 2D flat mesh. The perfect mapping is an isometric 
one that can only exist on the developable surfaces. Therefore in practice, we try to preserve the area or angle. They 
are called authalic (area-preserving) mapping, conformal (angle-preserving) mapping, isometric (length-preserving) or some 
combination of them.
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Fig. 1. (a) The bunny; (b) its parameterization with Calabi flow; (c), (d), (e) rendered with different textures.

Fig. 2. (a) Original mesh; (b) the parameterization with Calabi flow; (c), (d) the texturing with Calabi flow; (e) the texturing with CETM; (f) the texturing 
with Ricci flow.

The algorithms proposed in Hormann and Greiner (2000), Fu et al. (2015) can be designed on the discrete triangle mesh 
directly. The optimal mapping (Desbrun et al., 2002a; Lévy et al., 2002; Liu et al., 2008) results from defining and minimizing 
an energy related to the mesh triangles. Other methodologies are based on the smooth surface mapping theories and then 
derive their corresponding discrete approximation (Jin et al., 2007a; Gu and Yau, 2003).

Flow-based algorithms do not work on the positions directly, instead they evolve the surface metric into a flat one. The 
final parametrization is obtained by embedding the surface of the flat metric to the 2D plane. In Fig. 1, we show our Calabi 
flow based conformal parameterization. The angles are preserved very well in several corresponding rendering results. In 
Fig. 2, we exhibit three mesh parameterizations with Calabi flow, Ricci flow and CETM.

Contribution. We design a different conformal parameterization algorithm based on discrete Calabi flow which is derived 
from the Calabi energy. In our algorithm, we use a new dual-Laplacian operator to obtain the optimal solution. To the best of 
our knowledge, this is the first time that the discrete Calabi flow and dual-Laplacian operator are introduced to the graphics 
literature. To summarize, our algorithm is a new perspective method to gain parameterization. The energy expression is 
simple and very easy to understand: it is squared difference between current curvature vector and target curvature. This is 
one of the main advantages towards Ricci flow and CETM.

2. Related works

Due to the abundance of literature on mesh parameterization. Here, we focus on approaches that are the most relevant 
to ours. We refer the reader to some excellent surveys (Sheffer et al., 2006, 2007) for more information.

Tutte’s embedding. The algorithms (Floater, 2003; Desbrun et al., 2002b; Weber and Zorin, 2014; Tong et al., 2006)
based on Tutte’s embedding of planar graphs are fundamental ones. They map a 3D disk-topology meshes onto a Euclidean 
flat plane. The algorithm in Gortler et al. (2006) generalized them to handle genus-one meshes by integrating harmonic 
one-forms on the torus. Bright et al. (2017) generalized harmonic parameterization to arbitrary topology and Tong et al.
(2006) use harmonic forms to generate quad mesh. Euclidean orbifolds are used to process sphere-topology meshes in 
Aigerman and Lipman (2015) which achieves flat surfaces with cone singularities. Recently orbifolds were also extended to 
hyperbolic space in Noam and Yaron (2016). Hyperbolic orbifolds are able to handle a wider variety of cone arrangements 
and topologies than Euclidean orbifolds. Aigerman et al. (2017) extended orbifolds again which can bijectively parameterize 
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surfaces into spherical target domains called spherical orbifolds. The advantages of all of these methods are derived from 
that Tutte’s theory and are guaranteed to be bijective.

Injective parameterization. Besides bijective, the injective and distortion bounded algorithms (Myles and Zorin, 2012,
2013; Myles et al., 2014) are also sought after. The algorithms presented in Hormann and Greiner (2000), Sheffer et al.
(2005), Schüller et al. (2013), Aigerman et al. (2014), Weber and Zorin (2014), Fu et al. (2015), Diamanti et al. (2015), Chien 
et al. (2016) are locally injective, and the ones in Lipman (2012), Campen et al. (2015), Smith and Schaefer (2015) are 
globally injective.

Conformal parameterization. Based on conformal geometry theory, discrete conformal mapping definition is proposed. 
Ricci flow (Jin et al., 2007a, 2008a, 2008b), circle packing (Stephenson, 2005), circle patterns (Kharevych et al., 2006), con-
formal equivalence of triangle meshes (CETM) (Springborn et al., 2008) and conformal flattening (Ben-Chen et al., 2008)
are presented. The relationships and comparisons among these methods are discussed in Zhang et al. (2014, 2015). All of 
these algorithms achieve a discrete flat metric under certain flows. They iteratively update the edge lengths which are con-
formal to the original mesh in each step. Ricci flow can also work under hyperbolic background geometry (Jin et al., 2006;
Yang et al., 2009; Shi et al., 2013). However, these flow-based methods are not guaranteed to be injective.

Another approach for conformal parameterization is based on the conformal structure in Riemann surface theory. In the 
seminal paper (Gu and Yau, 2003), the discrete holomorphic differentials are defined. The conformal mapping is achieved 
by computing discrete conformal structures.

Area-preserving. Another kind of parameterizations is area-preserving. Recently discrete optimal mass transport theory 
is designed (Gu et al., 2013) and applied to obtain the map which can preserve the local triangle areas (Su et al., 2013, 2016; 
Zhao et al., 2013). The conformal and area-preserving approaches can also be mixed or interpolated by polar factorization 
method (Yu et al., 2018) to obtain the parameterization between them.

3. Calabi energy and Calabi flow

In the interest of being self-contained, we review some basic mathematical definitions and notations. For more detailed 
information on these topics, we refer to Lee (2003).

A smooth n-dimensional manifold M is a topological space which is locally Euclidean of dimension n and it can be 
covered by a series of coordinate charts {Uα, φα} which are C∞ compatible (Lee, 2003). A Riemannian metric tensor g on 
the manifold is a Euclidean inner product defined on the tangent space T p(Mn) of each point p of M (Petersen, 2006).

A 2-dimensional surface is usually denoted as S , we usually embed it in R3 , and equip each point with a local chart:

r : U →R
3,

where U ∈ R
2 and r is smooth. r is called a parameterization of S . At each point, let ri = ∂r/∂ui, i = 1, 2 be the tangent 

vectors along the isoparametric curves. They are the basis of tangent space at that point. The length of a general tangent 
vector dr = r1du1 + r2du2 can be computed by:

ds2 = 〈dr,dr〉 = (
du1 du2

)(
g11 g12
g21 g22

)(
du1
du2

)
, (1)

where 〈−,−〉 is the inner product in R3, and gij = 〈
ri, r j

〉
. In this case, the matrix g = (gij) is the Riemannian metric tensor 

on S . And we denote the inner product induced by g as 〈−,−〉g .
The angle between two tangent vectors can be measured by g. Suppose δr = r1δu1 + r2δu2 is another tangent vector, the 

angle between dr and δr measure by g is defined as:

θg = cos−1 〈dr, δr〉g√〈dr,dr〉g
√〈δr, δr〉g

. (2)

Suppose λ : S →R is a real function defined on the surface. Define another Riemannian metric

ḡ = e2λg,

then we have

〈dr, δr〉ḡ = e2λ 〈dr, δr〉g .

According to Eq. (2), we obtain θg = θḡ . So we say g and ḡ is conformally equivalent and e2λ is conformal factor between 
ḡ and g.

Every Riemannian metrics of 2-dimensional surface is locally conformally equivalent to the Euclidean flat metric (Chern, 
1955). That is, we can always choose a set of special parameters, such that the metric is represented as:

ds2 = e2λ(du2
1 + du2

2).

Such kinds of parameterizations are called the isothermal coordinates of the surface.
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Under isothermal coordinates, the Gaussian curvature is represented as:

K = −e−2λ∇2λ,

where ∇2 is the normal Laplace operator:

∇2 = ∂2

∂u2
1

+ ∂2

∂u2
2

,

and e−2λ∇2 is called the Laplace–Beltrami operator. Here we denote it as �.
2-dimensional Calabi flow was studied in Chen and He (2008). Suppose S is a smooth surface with a Riemann metric g, 

Calabi introduced the so-called Calabi energy, which is defined as:

	(g) =
∫
S

K 2dA, (3)

where dA is the area element of S .
The Calabi flow on S is defined as:

dgij

dt
= 2�K gij (4)

where K is the Guassian curvature induced by metric g which is equal to 2K and � is the Laplace–Beltrami operator.
With isothermal coordinates, we have g = e2λg0, then the Calabi flow becomes:

dλ

dt
= �K . (5)

It is proved that the above Calabi flow is convergent under certain conditions (Calabi, 1982).

4. Discrete metric and conformal class

In practice, smooth surfaces are often approximated by simplicial complexes, that is, piecewise linear triangle meshes. 
Concepts in the continuous setting can be generalized to the discrete setting. In this paper, a triangle mesh is denoted as M , 
which is associated with a vertex set V , an edge set E and a face set F . Here vi represents a certain vertex, ei j represents 
the edge between vertices vi and v j , and f i jk represents the face formed by vi , v j and vk .

A Riemannian metric on a piecewise linear discrete mesh M = (V , E, F ) is defined as a positive scalar function on edges:

l : E →R
+,

such that for each triangle face f i jk , edge lengths {li j, l jk, lki} satisfy the triangle inequality:

li j + l jk > lki; li j + lki > l jk; l jk + lki > li j .

The discrete metric determines corner angles {θ jk
i , θki

j , θ i j
k } of triangles by cosine laws in Euclidean background geome-

tries.
In discrete setting, we have infinite ways to assign edge lengths to make triangle inequalities be satisfied. However, 

it is difficult to settle down what the conformal deformation means. Inspired by the property that conformal map sends 
infinitesimal circles to infinitesimal circles, Thurston introduced circle packing on weighted meshes in Thurston (1976). In-
spired by conformal factors, Luo introduced another metric in Luo (2004) called Yamabe flow metric. And as a generalization 
of Thurston’s circle packing metric, inverse distance metric was introduced in Yang et al. (2009). These two metrics induced 
different definitions of conformal class. Both are approximations of the definition of conformal deformation in smooth set-
tings. In Zhang et al. (2014), a unified framework for circle packing was introduced and the metrics above were all included.

Thurston’s circle packing metric. The circle packing metric was firstly defined on weighted meshes in Thurston (1976). 
A weighted mesh (M, 
, 	) with a circle packing metric is a mesh with a function 
 assigning a radius ri to each vertex vi :


 : V →R
+,

and a function assigning a weight 	i j to each edge:

	 : E → [0,
π

2
].

Under this setting, we can determine edge lengths using different cosine laws in different background geometry:

l2i j = r2
i + r2

j + 2rir j cos	i j.
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Fig. 3. The two kinds of metrics. (a) Thurston’s circle packing, (b) inversive distance circle packing.

Given a mesh M , we say two circle metrics (
1, 	1) and (
2, 	2) are conformally equivalent if 	1 = 	2, they are in the 
same conformal class.

Inversive distance circle packing metric. This kind of metric is first introduced in Bowers and Stephenson (2004). It is 
a generalization of Thurston’s circle packing. We define a function on edges I : E → R, which is called inversive distance 
function. Edge lengths is determined as follows:

l2i j = r2
i + r2

j + 2rir j Ii j .

Given a mesh M , we say two circle metrics (
1, I1) and (
2, I2) are conformally equivalent if I1 = I2, they are in the 
same conformal class. This kind of metric can approximate initial edge lengths very well, so it is more practical than 
Thurston’s circle packing.

Geometric interpretation. Two kinds of circle packing metrics can be illustrated as Fig. 3. Each vertex vi has a circle 
with radius ri centering at it. For Thurston’s circle packing metric, two adjacent circles intersect with angle 	i j . The edge 
length is the distance between two circle centers. For inverse distance circle metric, the circles need not intersect with each 
other, and cos	i j is replaced by the inverse distance Ii j .

5. Our algorithm

Discrete Calabi flow (Ge, 2018) defined on triangular meshes is an approximation of smooth Calabi flow on smooth 
surfaces. Given weighted mesh (M, 
, 	) with circle packing metric, we set:

ui = log ri .

We define discrete Calabi flow as:

du

dt
= �dualK, (6)

where �dual is a new kind of Laplacian operator, we call it discrete dual-Laplacian operator (Ge, 2018), which is defined 
as:

�dual = −Ldual = −∇u K = (Li j)N×N = −∂(K1, ..., K N)

∂(u1, ..., uN )
(7)

= −

⎛
⎜⎜⎝

∂ K1
∂u1

· · · ∂ K1
∂uN· · · · ·

· · · · ·
∂ K N
∂u1

· · · ∂ K N
∂uN

⎞
⎟⎟⎠ ,

and K is the well-known traditional Gaussian curvature which is computed as the angle deficit, i.e. 2π minus angle sum for 
an inner vertex and π minus angel sum for a boundary vertex.

We can also modify discrete Calabi flow into a form with prescribed curvature:

du

dt
= �dual(K − K̄) (8)

and K̄ = (K̄1, K̄2, ..., K̄ N) is the prescribed curvature vector.
Calabi flow is similar to Ricci flow. To compare, we notice that the Ricci flow is expressed by the following format:

du = K − K̄.

dt
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Fig. 4. Geometric interpretation of dual Laplacian and cotangent Laplacian.

The discrete Calabi energy is defined as the following.

C(u) =
∑
vi∈V

(K̄ i − Ki)
2.

The discrete Calabi flow is the negative gradient flow of discrete Calabi energy, and the discrete Calabi energy is de-
scending along this flow (Ge, 2018). With a little calculation, we can find that

∇uC = �dual(K̄ − K)

If Calabi flow converges, Calabi energy will arrive at its critical point, then:

�dual(K̄ − K) = 0.

Due to the results of Guo (2011), Ldual is positive defined, so after the flow converges, we obtain a metric with prescribed 
curvatures.

Dual-Laplacian operator. The dual-Laplacian operator �dual is different from the well-known cotangent Laplacian oper-
ator �cot . It is a special type of the discrete Laplacian and comes from the dual structure of the circle packings (Goes et al., 
2014). It has been discussed and studied by Glickenstein (2005a, 2005b) systematically.

Both �dual and �cot operate on the column vector functions which are defined on mesh vertices with a matrix multipli-
cation.

We need to derive the explicit form of Ldual = ∇uK. The calculation is direct. We write i ∼ j in the following if vi and v j
are adjacent.

If i ∼ j,

(Ldual)i j = (Ldual) ji = ∂ Ki

∂u j
= −

∑
f i jk

∂θ
jk

i

∂u j
. (9)

If i = j, according to Gauss–Bonnet Theorem, we have

(Ldual)ii = ∂ Ki

∂ui
= −

∑
j∼i

∂ K j

∂ui
, (10)

otherwise,

(Ldual)i j = 0. (11)

So the calculation of dual Laplacian boils down to the calculation of (Ldual)i j . This quantity can be associated to edge ei j . 
We call it edge weight, and denote it as (wd)i j , which is only determined by its two adjacent faces.

For the equation (9), there is a formula with nice geometric interpretation. As shown in Fig. 4, the face f i jk and face f i jl
are two adjacent faces at edge ei j . On each vertex of the face, there is a circle with the radius value of its corresponding 
metric. For each face of the triangle, we can assign a circle orthogonal to three vertex circles simultaneously. This circle is 
called the power circle of the face and its center is called power center. It can be shown that the line connecting two power 
centers O i and O j in this figure is orthogonal to edge ei j , and we call this segment as dual edge of ei j . Denote the length 
of ei j as li j and the length of its dual edge as lo = |O i O j |.
i j
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Finally we have a very nice formula for edge weight (wd)i j :

(Ldual)i j = (wd)i j = −∂(θ
jk

i + θ
jl

i )

∂u j
= loi j

li j
. (12)

On the other hand, the formula of the well-known cotangent-Laplacian operator in computer graphics community is 
expressed as:

�cot = −LT
cot .

The operator Lcot is computed as follows:
If i ∼ j,

(Lcot)(i j) = (Lcot) ji = 1

2

∑
f i jk

cot θ
i j
k .

If i = j,

(Lcot)ii = −
∑
j∼i

(Lcot)i j,

otherwise,

(Lcot)i j = 0.

The computation of the cotangent Laplacian is related to the corresponding edge weights. And it has an geometric 
interpretation too. As shown in Fig. 4, there is a circumcircle for every triangle, the line segment between two circumcenter 
Ci and C j is also called dual edge of ei j . Denote the length of ei j as li j and length of its dual edge as lci j , then we have

(Lcot)i j = (wc)i j = cot θ
i j
k + cot θ

i j
l

2
= lci j

li j
.

Actually, the circumcenter can be also treated as some kind of power center. In this case, three vertex circles shrink to 
a point and the orthogonal circle of them is exactly the same as the circumcircle. Therefore these two kinds of Laplacian 
operators have unified forms.

Algorithm 1 Compute initial inversive distance circle packing metric.
1: for ei j ∈ E do
2: dij ← the original edge length of ei j in R3

3: end for
4: for f i jk ∈ F do

5: r jk
i ← dki+dij−d jk

2
6: end for
7: for vi ∈ V do
8: Determine vertex radius by: ri = min f i jk r jk

i
9: end for

10: for ei j ∈ E do

11: compute edge metric weight by Ii j ← d2
i j−r2

i −r2
j

2ri r j

12: end for

As the same with discrete Ricci flow, the solution exists and converges if and only if it satisfies Thurston’s circle packing 
condition which is explained in detail in Ge (2018). The convergent analysis of discrete Calabi flow for circle packing metric 
and inverse distance metric are discussed in Ge (2018) and Ge and Jiang, (2017a, 2017b) respectively.

Initial metric. The Calabi flow starts with an initial metric, there are some choices, such as Thurston’s circle packing, in-
verse distance circle packing, and so on Springborn et al. (2008), Zhang et al. (2014). The desired metric should approximate 
original edge lengths in R3 as much as possible. Inverse distance circle packing metric is equal to the original edge length, 
and Thurston’s circle packing can only approximate them. In our experiments, inversive distance circle packing metric does 
well in terms of this aspect. Therefore we use the inversive distance circle packing metric in our experiments. We follow 
the method in Yang et al. (2009) to compute the initial inverse distance circle packing metric. The detail of the algorithms 
is shown in Algorithm 1.

In Fig. 5, we show the comparison of our Calabi flow based conformal parameterization by Thurston’s circle packing 
metric and inverse distance circle packing metric, we observe that inverse distance metric has better conformal results 
when meshes are coarse.
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Fig. 5. (a), (d) The original meshes; (b), (e) conformal parameterization with inverse distance circle packing metric; (c), (f) conformal parameterization with 
Thurston’s circle packing metric.

Gradient descending. Calabi energy is minimized to obtain the optimal solution. We use the method of gradient de-
scending to solve the optimization problem of Calabi energy. The scheme of conjugate gradient descending and accelerated 
gradient descending can also be applied. Intuitively, we can treat ∂ K j

∂ui
(K̄ j − K j) as the descending direction of K j along 

axis ui . So the gradient of Calabi energy can be seen as the average of adjacent descending directions. The whole procedure 
of the gradient descending algorithm is shown in Algorithm 2.

Algorithm 2 Calabi flow.
1: Compute an initial circle packing metric.
2: Set target curvatures of each vertex.
3: while maxi |Ki − K̄ i | < ε do
4: Calculate curvatures according current metric.
5: Calculate dual Laplacian L.
6: Compute the updating direction du ← LT (K̄ − K).
7: Update conformal factors of each vertex by u ← u + δdu.
8: end while � This procedure is the optimization of Calabi energy.
9: Embed the mesh to Euclidean plane.

Embedding. After the Calabi flow converges, we obtain a flat metric. The 2D vertex positions which are compatible with 
the metric need to be calculated. We choose a triangle face as root and embed it onto Euclidean plane, then we use the 
breadth-first method to embed other triangle faces. The details of our algorithm are shown in Algorithm 3.

Algorithm 3 Embed the mesh with flat metric to Euclidean plane.
1: Choose a root face and then embed it.
2: for f i jk in the sequence of breadth-first search of all faces do
3: if all vertices of f i jk have been embedded then
4: return
5: else
6: Compute intersections of circles C(pi, lik) and C(p j , l jk).
7: Choose the intersection which preserve the orientation of f i jk as the embedding of vk . � We assume vi and v j have been embedded.
8: end if
9: end for

6. Experiments

According to Gauss–Bonnet theorem, only genus one closed surfaces admit Euclidean conformal structure, which means 
a flat metric without any singularity. In this setting, we set all target curvatures as zero, and run flow on it directly. When 
the flow converges, we slice the mesh into a disk and then the mesh can be embedded into Euclidean plane. In Fig. 6, we 
show the parameterizations of the genus one meshes.

For the closed meshes with genus but one, we need cut them into the disk-type topology. We design experiments with 
three different kinds of boundary settings: the boundary with fixed curvatures, circle boundary, and free boundary.

Fixed boundary. The result of this kind of configuration is a polygon with corner angles being the π minus target 
curvature K̄ i . In the step of setting target curvatures, we set all target curvatures of each interior vertices zero, and all target 
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Fig. 6. The meshes of genus one and their Calabi flow based parameterizations.

Fig. 7. The Calabi flow based parametrizations with fixed rectangle boundary.

curvatures of boundary vertices zero except corner vertices. We should guarantee that the sum of target curvatures of these 
corner vertices equals to 2π , make it admissible with Gauss–Bonnet Theorem.

In Fig. 7, we show two parametrization results with fixed rectangle boundaries.
Circular boundary. If the target boundary is a circle, we cannot simply set all boundary target curvatures to be 2π

m , 
where m is the number of vertices of the boundary. In fact, if the boundary is a circle, the curvature of each boundary 
vertex should satisfy the following conditions. And we must update these target curvatures in each iteration.

Ki

li−1,i + li,i+1
≡ c,∀vi ∈ ∂M ,
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Fig. 8. The Calabi flow based parametrization results with the circle boundaries.

Fig. 9. Calabi flow based parameterizations with free boundary.

where li j is edge length under the target metric, and
∑

vi∈∂M

Ki = 2π .

We demonstrate two Calabi flow conformal parameterization results with circle boundaries in Fig. 8.
Free boundary. In this setting, we do not set boundary target curvatures directly, instead, we set du of boundary vertices 

in Algorithm 2 to be zero. In this way, the Calabi energy will continue to decrease, and this will lead to the smaller area 
distortion. To be specific, we set the value of du on the boundary be zero, and only update the interior vertices. Some 
results are shown in Fig. 9.

We run experiments on dozens of models and compare the conformities of our Calabi flow, Ricci flow, and CETM algo-
rithms. In Fig. 13, we show several meshes parametrized with Calabi flow, Ricci flow, and CETM algorithms respectively. We 
observed that three kinds of algorithms have almost the same conformities and all of them can preserve the angles nicely.

We calculate the statistic of angle error ratios of the original kitten model and its parameterizations by three kinds of 
algorithms. In Fig. 10, we show that three methods exhibit almost the same distribution of angle ratios. We choose 300 
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Fig. 10. Angle error ratio distributions of the kitten model by Calabi flow (a), Ricci flow (b) and CETM (c) respectively.

Fig. 11. Angle relative errors on randomly selected 300 faces of kitten model.

Fig. 12. Mean angle relative errors on all models.

corners of the kitten model randomly. The relative angle errors are shown in Fig. 11. It is observed that there is some local 
conformal difference of three algorithms. Finally, we exhibit the mean relative angle errors of all test models in Fig. 12. 
Based on these experiments, we conclude that our Calabi flow method has the same conformity with Ricci flow and CETM.

In our experiments, as the same as Ricci flow and CETM, Calabi flow may fail on the meshes with very narrow triangles 
or with large curvatures. It means that the convergence of these discrete flows depend on the mesh quality.

7. Conclusions

In this paper, we present a conformal mesh parameterization based on discrete Calabi flow. This flow is different from 
previous well-known Ricci flow and CETM, which can produce comparable results to the other two flows. The strongest 
aspect of Calabi flow is the simplicity of the optimization energy, while Ricci flow and CETM’s energies cannot be easily 
recognized.

Currently, we only use Calabi flow on the Euclidean background. It is also possible to explore Calabi flow in the hyperbolic 
background (Ge and Xu, 2016).

In Ricci flow, dynamic edge flips (Luo, 2004) can theoretically be employed for meshes of low quality to enable the 
convergence of the flow. It is also possible to exploit this technique to Calabi flow in future.

Calabi energy has a clear geometric meaning. It expressed the difference between current Gaussian curvature and target 
Gaussian curvature. It is potential to exploit this feature in mesh smoothing and other related operations.

Calabi flow has higher order than Ricci flow. The convergence of the flow is proved under Thurston’s circle packing 
metric in Ge (2018). In our experiments, we use the inversive distance circle packing metric, which improves the quality 
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Fig. 13. The first row is with Calabi flow; the second is with Ricci flow; The third is with CETM.

a lot. However, the rigorous proof of the convergence under this kind of metric has not been settled yet. Since the main 
purpose of this paper is to introduce Calabi flow to the graphics community, we have only tried the method and simply 
used the gradient descent. It is potential to exploit faster optimization method and prove the convergence under inversive 
distance circle packing metric to get insight in the robustness of Calabi flow in the future.

The conformal flow tool, such as Ricci flow, has already been used in the applications of brain analysis (Wang et al., 
2007), shape analysis (Gu et al., 2007), network routing (Sarkar et al., 2009; Gao et al., 2016), shape modeling (Patanè et al., 
2014), shape registration (Gao et al., 2013), face matching (Zeng et al., 2008), geometric structures (Jin et al., 2007b), and so 
on. In the future, we will explore the applicability of Calabi flow in these kinds of applications.

Acknowledgements

We would like to thank anonymous reviewers for their insightful feedbacks, valuable comments, and suggestions. Some 
pictures are rendered by Mitsuba (Jakob, 2010). All 3D models are from the AIM@SHAPE shape repository and Thingi10K 
repository. Thanks MeshDGP (Zhao, 2016) framework for the implementation reference. The project is partially supported 
by NSFC No. 61772105, 61720106005, NSF DMS-1418255, AFOSR FA9550-14-1-0193, NIH 1R01LM012434. Ge is supported 
by NSFC under grant No. 11501027. Wang is supported by NSFC No. 11772047 and Key International Collaborating Project 
from NSFC No. 11620101001.

References

Aigerman, N., Kovalsky, S.Z., Lipman, Y., 2017. Spherical orbifold Tutte embeddings. ACM Trans. Graph. 36 (4), 90.
Aigerman, N., Lipman, Y., 2015. Orbifold Tutte embeddings. ACM Trans. Graph. 34, 190.
Aigerman, N., Poranne, R., Lipman, Y., 2014. Lifted bijections for low distortion surface mappings. ACM Trans. Graph. 33, 69.
Ben-Chen, M., Gotsman, C., Bunin, G., 2008. Conformal flattening by curvature prescription and metric scaling. In: Computer Graphics Forum, vol. 27. Wiley 

Online Library, pp. 449–458.
Bowers, P.L., Stephenson, K., 2004. Uniformizing Dessins and Belyi Maps Via Circle Packing, vol. 170. American Mathematical Soc.
Bright, A., Chien, E., Weber, O., 2017. Harmonic global parametrization with rational holonomy. ACM Trans. Graph. 36 (4), 89.
Calabi, E., 1982. Extremal Kähler Metrics. Annals of Mathematics Studies, pp. 259–290.
Campen, M., Bommes, D., Kobbelt, L., 2015. Quantized global parametrization. ACM Trans. Graph. 34, 192.
Chen, X., He, W., 2008. On the Calabi flow. Am. J. Math. 130 (2), 539–570.
Chern, S.-S., 1955. An elementary proof of the existence of isothermal parameters on a surface. Proc. Am. Math. Soc. 6 (5), 771–782.
Chien, E., Levi, Z., Weber, O., 2016. Bounded distortion parametrization in the space of metrics. ACM Trans. Graph. (TOG) 35 (6), 215.
Chow, B., Luo, F., et al., 2003. Combinatorial Ricci flows on surfaces. J. Differ. Geom. 63 (1), 97–129.
Desbrun, M., Meyer, M., Alliez, P., 2002a. Intrinsic parameterizations of surface meshes. In: Computer Graphics Forum, vol. 21. Wiley Online Library, 

pp. 209–218.
Desbrun, M., Meyer, M., Alliez, P., 2002b. Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21, 209–218.
Diamanti, O., Vaxman, A., Panozzo, D., Sorkine-Hornung, O., 2015. Integrable polyvector fields. ACM Trans. Graph. (TOG) 34 (4), 38.
Floater, M.S., 2003. One-to-one piecewise linear mappings over triangulations. Math. Comput. 72, 685–696.
Fu, X.-M., Liu, Y., Guo, B., 2015. Computing locally injective mappings by advanced MIPS. ACM Trans. Graph. (TOG) 34 (4), 71.
Gao, J., Gu, X., Luo, F., 2016. Discrete Ricci flow for geometric routing. In: Encyclopedia of Algorithms.
Gao, M., Shi, R., Zhang, S., Zeng, W., Qian, Z., Gu, X., Metaxas, D.N., Axel, L., 2013. High resolution cardiac shape registration using Ricci flow. In: ISBI.
Ge, H., 2012. Combinatorial Methods and Geometric Equations. Thesis (Ph.D.). Peking University, Beijing.

http://refhub.elsevier.com/S0167-8396(18)30015-3/bib41696765726D616E32303137534F54s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib41696765726D616E323031354F726269666F6C645445s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib41696765726D616E323031344C69667465644246s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib62656E32303038636F6E666F726D616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib62656E32303038636F6E666F726D616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib626F7765727332303034756E69666F726D697A696E67s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib42726967687432303137484750s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib63616C616269313938326B61686C6572s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib43616D70656E323031355175616E74697A65644750s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6368656E3230303863616C616269s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib636865726E3139393569736F746865726D616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib636869656E32303136626F756E646564s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib63686F7732303033636F6D62696E61746F7269616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6465736272756E32303032696E7472696E736963s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6465736272756E32303032696E7472696E736963s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib4465736272756E32303032496E7472696E736963504Fs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6469616D616E746932303135696E7465677261626C65s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib466C6F61746572323030334F6E65746F6F6E65504Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib667532303135636F6D707574696E67s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib47616F3230313644697363726574655246s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib47616F32303133486967685243s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib676532303132636F6Ds1


108 H. Zhao et al. / Computer Aided Geometric Design 63 (2018) 96–108
Ge, H., 2018. Combinatorial Calabi flows on surfaces. Trans. Am. Math. Soc. 370 (2), 1377–1391.
Ge, H., Jiang, W., 2017a. On the deformation of inversive distance circle packings, II. J. Funct. Anal. 272 (9), 3573–3595.
Ge, H., Jiang, W., 2017b. On the deformation of inversive distance circle packings, III. J. Funct. Anal. 272 (9), 3596–3609.
Ge, H., Xu, X., 2016. 2-dimensional combinatorial Calabi flow in hyperbolic background geometry. Differ. Geom. Appl. 47, 86–98.
Glickenstein, D., 2005a. A combinatorial Yamabe flow in three dimensions. Topology 44 (4), 791–808.
Glickenstein, D., 2005b. Geometric triangulations and discrete laplacians on manifolds. Preprint. arXiv:math /0508188.
Goes, F.d., Memari, P., Mullen, P., Desbrun, M., 2014. Weighted triangulations for geometry processing. ACM Trans. Graph. 33 (3), 28.
Gortler, S.J., Gotsman, C., Thurston, D., 2006. Discrete one-forms on meshes and applications to 3D mesh parameterization. Comput. Aided Geom. Des. 23, 

83–112.
Gu, X., Luo, F., Sun, J., Yau, S.-T., 2013. Variational principles for Minkowski type problems, discrete optimal transport, and discrete Monge–Ampere equations. 

Preprint. arXiv:1302 .5472.
Gu, X., Wang, S., Kim, J., Zeng, Y., Wang, Y., Qin, H., Samaras, D., 2007. Ricci flow for 3D shape analysis. In: ICCV.
Gu, X., Yau, S.-T., 2003. Global conformal surface parameterization. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry 

Processing. Eurographics Association, pp. 127–137.
Guo, R., 2011. Local rigidity of inversive distance circle packing. Trans. Am. Math. Soc. 363 (9), 4757–4776.
Hormann, K., Greiner, G., 2000. Mips: An Efficient Global Parametrization Method. Technical report, DTIC Document.
Jakob, W., 2010. Mitsuba renderer. http://www.mitsuba -renderer.org.
Jin, M., Kim, J., Gu, X., 2007a. Discrete surface Ricci flow: theory and applications. In: IMA Conference on the Mathematics of Surfaces.
Jin, M., Kim, J., Luo, F., Gu, X., 2008a. Discrete surface Ricci flow. IEEE Trans. Vis. Comput. Graph. 14, 1030–1043.
Jin, M., Kim, J., Luo, F., Gu, X., 2008b. Variational method on discrete Ricci flow. In: IWCIA Special Track on Applications.
Jin, M., Luo, F., Gu, X., 2006. Computing surface hyperbolic structure and real projective structure. In: Proceedings of the 2006 ACM Symposium on Solid 

and Physical Modeling. ACM, pp. 105–116.
Jin, M., Luo, F., Gu, X., 2007b. Computing general geometric structures on surfaces using Ricci flow. Comput. Aided Des. 39, 663–675.
Kharevych, L., Springborn, B., Schröder, P., 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph. (TOG) 25 (2), 412–438.
Lee, J.M., 2003. Introduction to Smooth Manifolds. Springer.
Lévy, B., Petitjean, S., Ray, N., Maillot, J., 2002. Least squares conformal maps for automatic texture atlas generation. In: ACM Transactions on Graphics (TOG), 

vol. 21. ACM, pp. 362–371.
Lipman, Y., 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph. 31, 108.
Liu, L., Zhang, L., Xu, Y., Gotsman, C., Gortler, S.J., 2008. A local/global approach to mesh parameterization. In: Computer Graphics Forum, vol. 27. Wiley 

Online Library, pp. 1495–1504.
Luo, F., 2004. Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6 (05), 765–780.
Myles, A., Pietroni, N., Zorin, D., 2014. Robust field-aligned global parametrization. ACM Trans. Graph. (TOG) 33 (4), 135.
Myles, A., Zorin, D., 2012. Global parametrization by incremental flattening. ACM Trans. Graph. (TOG) 31 (4), 109.
Myles, A., Zorin, D., 2013. Controlled-distortion constrained global parametrization. ACM Trans. Graph. (TOG) 32 (4), 105.
Noam, A., Yaron, L., 2016. Hyperbolic orbifold Tutte embeddings. ACM Trans. Graph. 35, 217.
Patanè, G., Li, X., Gu, X., 2014. An introduction to Ricci flow and volumetric approximation with applications to shape modeling. In: SIGGRAPH ASIA Courses.
Petersen, P., 2006. Riemannian Geometry. Springer-Verlag, New York.
Sarkar, R., Yin, X., Gao, J., Luo, F., Gu, X., 2009. Greedy routing with guaranteed delivery using Ricci flows. In: IPSN.
Schüller, C., Kavan, L., Panozzo, D., Sorkine-Hornung, O., 2013. Locally injective mappings. In: Computer Graphics Forum, vol. 32. Wiley Online Library, 

pp. 125–135.
Sheffer, A., Hormann, K., Levy, B., Desbrun, M., Zhou, K., Praun, E., Hoppe, H., 2007. Mesh parameterization: theory and practice.
Sheffer, A., Lévy, B., Mogilnitsky, M., Bogomyakov, A., 2005. Abf++: fast and robust angle based flattening. ACM Trans. Graph. 24, 311–330.
Sheffer, A., Praun, E., Rose, K., 2006. Mesh parameterization methods and their applications. Found. Trends Comput. Graph. Vis. 2.
Shi, R., Zeng, W., Su, Z., Damasio, H., Lu, Z., Wang, Y., Yau, S.-T., Gu, X., 2013. Hyperbolic harmonic mapping for constrained brain surface registration. In: 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2531–2538.
Smith, J., Schaefer, S., 2015. Bijective parameterization with free boundaries. ACM Trans. Graph. 34, 70.
Springborn, B., Schröder, P., Pinkall, U., 2008. Conformal equivalence of triangle meshes. In: ACM Transactions on Graphics (TOG), vol. 27. ACM, p. 77.
Stephenson, K., 2005. Introduction to Circle Packing: The Theory of Discrete Analytic Functions. Cambridge University Press.
Su, K., Cui, L., Qian, K., Lei, N., Zhang, J., Zhang, M., Gu, X.D., 2016. Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass 

transportation. Comput. Aided Geom. Des. 46, 76–91.
Su, Z., Zeng, W., Shi, R., Wang, Y., Sun, J., Gu, X., 2013. Area preserving brain mapping. In: Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, pp. 2235–2242.
Thurston, W., 1976. Geometry and Topology of Three-Manifolds. Princeton Lecture Notes.
Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M., 2006. Designing quadrangulations with discrete harmonic forms. In: Proceedings of the Fourth Eurograph-

ics Symposium on Geometry Processing, pp. 201–210.
Wang, Y., Gu, X., Chan, T.F., Thompson, P.M., Yau, S.-T., 2007. Brain surface conformal parameterization with the Ricci flow. In: ISBI.
Weber, O., Zorin, D., 2014. Locally injective parametrization with arbitrary fixed boundaries. ACM Trans. Graph. 33, 75.
Yang, Y.-L., Guo, R., Luo, F., Hu, S.-M., Gu, X., 2009. Generalized discrete Ricci flow. Comput. Graph. Forum 28, 2005–2014.
Yu, X., Lei, N., Zheng, X., Gu, X., 2018. Surface parameterization based on polar factorization. J. Comput. Appl. Math. 329 (C), 24–36.
Zeng, W., Yin, X., Zeng, Y., Lai, Y.-K., Gu, X., Samaras, D., 2008. 3D face matching and registration based on hyperbolic Ricci flow. In: CVPR Workshops.
Zhang, M., Guo, R., Zeng, W., Luo, F., Yau, S.-T., Gu, X., 2014. The unified discrete surface Ricci flow. Graph. Models 76, 321–339.
Zhang, M., Zeng, W., Guo, R., Luo, F., Gu, X.D., 2015. Survey on discrete surface Ricci flow. J. Comput. Sci. Technol. 30, 598–613.
Zhao, H., 2016. MeshDGP: A C Sharp mesh processing framework. http://meshdgp .github .io/.
Zhao, X., Su, Z., Gu, X.D., Kaufman, A., Sun, J., Gao, J., Luo, F., 2013. Area-preservation mapping using optimal mass transport. IEEE Trans. Vis. Comput. 

Graph. 19 (12), 2838–2847.

http://refhub.elsevier.com/S0167-8396(18)30015-3/bib676532303132636F6D62696E61746F7269616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6765323031376465666F726D6174696F6E32s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6765323031376465666F726D6174696F6E33s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib67653230313632s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib676C69636B656E737465696E32303035636F6D62696E61746F7269616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib676C69636B656E737465696E3230303567656F6D6574726963s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib476F657332303134575447s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib476F72746C65723230303644697363726574654F4Fs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib476F72746C65723230303644697363726574654F4Fs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib677532303133766172696174696F6E616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib677532303133766172696174696F6E616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib47753230303752696363694646s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib677532303033676C6F62616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib677532303033676C6F62616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib67756F32303131696E7665727365s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib686F726D616E6E323030306D697073s1
http://www.mitsuba-renderer.org
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib4A696E3230303744697363726574655352s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib4A696E3230303844697363726574655352s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib4A696E32303038566172696174696F6E616C4D4Fs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6A696E32303036636F6D707574696E67s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6A696E32303036636F6D707574696E67s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib4A696E32303037436F6D707574696E674747s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6B6861726576796368323030366469736372657465s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6C6565323030336D616E69666F6C6473s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6C657679323030326C65617374s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6C657679323030326C65617374s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib4C69706D616E32303132426F756E646564444Ds1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6C6975323030386C6F63616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6C6975323030386C6F63616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6C756F3230303379616D616265s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6D796C657332303134726F62757374s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6D796C657332303132676C6F62616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib6D796C657332303133636F6E74726F6C6C6564s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib41696765726D616E323031364879706572626F6C69634F54s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib506174616E32303134416E4954s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib7269656D616E6E67656F6D65747279s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib5361726B6172323030394772656564795257s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib736368756C6C6572323031336C6F63616C6C79s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib736368756C6C6572323031336C6F63616C6C79s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib53686566666572323030354142464641s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib53686566666572323030364D657368504Ds1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib736869323031336879706572626F6C6963s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib736869323031336879706572626F6C6963s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib536D6974683230313542696A6563746976655057s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib737072696E67626F726E32303038636F6E666F726D616Cs1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib7374657068656E736F6E32303035696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib73753230313661726561s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib73753230313661726561s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib73753230313361726561s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib73753230313361726561s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib7468757273746F6Es1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib546F6E6732303036445144s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib546F6E6732303036445144s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib57616E6732303037427261696E5343s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib5765626572323031344C6F63616C6C794950s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib59616E673230303947656E6572616C697A65644452s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib79753230313773757266616365s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib5A656E67323030383344464Ds1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib5A68616E67323031345468655544s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib5A68616E67323031355375727665794F44s1
http://meshdgp.github.io/
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib7A68616F3230313361726561s1
http://refhub.elsevier.com/S0167-8396(18)30015-3/bib7A68616F3230313361726561s1

	Conformal mesh parameterization using discrete Calabi ﬂow
	1 Introduction
	2 Related works
	3 Calabi energy and Calabi ﬂow
	4 Discrete metric and conformal class
	5 Our algorithm
	6 Experiments
	7 Conclusions
	Acknowledgements
	References


