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Figure 1: Kick (High-Res). Our method can efficiently simulate a high-resolution version (more than 120K nodes) of the Kick
animation in CIPC [Li et al. 2021] at 23s per frame, which is 6.5× faster than a heavily optimized and GPU accelerated CIPC
solver. All collisions are robustly handled with intricate wrinkles captured on the cloth, highlighting the efficacy of our
approach in handling fine-detailed garment simulations in complex animation scenarios.

ABSTRACT
We propose an efficient cloth simulation method that combines the
merits of two drastically different numerical procedures, namely
the subspace integration and parallelizable iterative relaxation. We
show those two methods can be organically coupled within the
framework of projective dynamics (PD), where both low- and high-
frequency cloth motions are effectively and efficiently computed.
Our method works seamlessly with the state-of-the-art contact
handling algorithm, the incremental potential contact (IPC), to
offer the non-penetration guarantee of the resulting animation.
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Our core ingredient centers around the utilization of subspace for
the expedited convergence of Jacobi-PD. This involves solving the
reduced global system and smartly employing its precomputed
factorization. In addition, we incorporate a time-splitting strategy
to handle the frictional self-contacts.

Specifically, during the PD solve, we employ a quadratic proxy to
approximate the contact barrier. The prefactorized subspace system
matrix is exploited in a reduced-space LBFGS. The LBFGS method
starts with the reduced system matrix of the rest shape as the initial
Hessian approximation, incorporating contact information into the
reduced system progressively, while the full-space Jacobi iteration
captures high-frequency details. Furthermore, we address penetra-
tion issues through a penetration correction step. It minimizes an
incremental potential without elasticity using Newton-PCG. Our
method can be efficiently executed on modern GPUs. Experiments
show significant performance improvements over existing GPU
solvers for high-resolution cloth simulation.
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1 INTRODUCTION
In cloth simulation, a fine and high-resolution discretization is of-
ten needed for rich and vivid effects like detailed wrinkles, folds,
and creases, which coarser models cannot produce. The complex-
ity, however, increases disproportionally w.r.t to the degrees of
freedom (DOFs) of the system, making high-resolution simulation
prohibitive for time-critical applications, whereas animating virtual
garments at an interactive rate is always desired.

It is well understood that the primary obstacle for high-resolution
cloth animation lies in the computational cost associated with the
system solve for numerical integration at each time step. The cloth
dynamics is nonlinear, and commonly used solvers rely on incre-
mental linearization of the equation of motion e.g., see [Baraff and
Witkin 1998]. Collisions and self-collisions, which are ubiquitous
in cloth simulation, impose extra difficulties. Traditional methods
often leverage soft repulsion to handle collisions [Tang et al. 2018;
Wu et al. 2020]. These approaches require careful parameter tuning
to prevent undesirable artifacts like cloth interpenetration. The
state-of-the-art solution to contact modeling is incremental po-
tential contact (IPC) [Li et al. 2020], which utilizes log barriers
and continuous collision detection (CCD) to strictly maintain ob-
jects’ separation. The joint optimization with cloth elasticity is
numerically challenging as the collision component is considerably
stiffer and of higher frequency. The increased resolution also vastly
complicates the spectrum of the system. While a wide range of
numerical algorithms are available, they are proven only effective
in limited or specific situations. For instance, gradient-based strate-
gies [Wang and Yang 2016] are quite parallelizable and efficient,
but the performance declines quickly for stiffer instances. On the
other hand, direct solvers are robust against numerical stiffness
when paired with line search [Wolfe 1969, 1971], but they are highly
sequential and expensive for large-scale problems.

The pros and cons of existing algorithms endorse their strong
complementarity, which forms our key rationale, illustrated in Fig.
2. Specifically, we seek algorithmic synergy between direct and
iterative numerical procedures for efficient high-resolution cloth
animations. We argue that parallel local relaxation schemes e.g.,
Jacobi or Guass-Seidel are most effective if low-frequency residuals
can be pre-eliminated. The latter happens to be the task in which
subspace methods excel. The coordination of those two simulation
modalities collectively delivers combined efficiency and conver-
gence that existing methods can hardly match. Model reduction

Chebyshev-JacobiNewton-PCGSubspace BFGS

High frequencyLow frequency

Figure 2: Subspace simulation, Newton method and
Chebyshev-Jacobi excel at reducing residuals in different
frequency ranges. Our method combines the advantages of
Subspace BFGS and Chebyshev-Jacobi to achieve similar out-
comes as Newton-PCG, but with improved performance.

suppresses the system into a low-rank subspace, wherein the low-
frequency residual can be solved efficiently. At the other end of
the spectrum, the remaining high-frequency components become
localized, making them an ideal target for parallel GPU solvers.

In this paper, we propose a novel subspace-preconditioned pro-
jective dynamics (PD) framework [Bouaziz et al. 2014] for cloth
simulation. At each global step of PD, we solve for the displace-
ment field within the subspace to capture low-frequency motion
modes, with a pre-factorized subspace global matrix. The high-
frequency details are dealt with using parallel Chebyshev-Jacobi
relaxation [Wang 2015; Wathen 2008] on the original full-order
system. We adopt a time-splitting scheme along with a quadratic
contact proxy [Xie et al. 2023] to handle complex contacts. A novel
modified Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is in-
corporated to progressively integrate the quadratic contact proxy
into the pre-factorized subspace global matrix, which circumvents
the need for re-factorization. Our comparative evaluation demon-
strates remarkable performance gain, enabling another 10× accel-
eration over the state-of-the-art simulation techniques – like IPC,
the resulting animation is guaranteed to be free of any interpene-
trations.

2 RELATEDWORK
2.1 Cloth Simulation
Cloth and thin shell simulation, ubiquitous in daily life, continue
to be central in the realm of computer graphics and animation
[Choi and Ko 2005a; Gingold et al. 2004; Grinspun et al. 2003].
Modern cloth animation workflows largely incorporate an implicit
time integration scheme, a practice pioneered by Baraff and Witkin
[1998]. Given the reduced stretchability of many fabrics, strain
limiting is extensively used to prevent over-constraint [Goldenthal
et al. 2007; Provot et al. 1995; Thomaszewski et al. 2009; Wang et al.
2010].

Considerable research has focused on refining material modeling
to accurately emulate cloth’s mechanical behaviors. For example,
Volino et al. [2009] introduced a nonlinear and anisotropic tensile
model based on continuum mechanics. Cloth bending is closely
tied to the parameterization of the dihedral angle [Volino et al.
1995], with Breen et al. [1994] leveraging linear beam theory to
link bending moment and curvature. Bridson et al. [2005] devel-
oped the bending mode of a hinge-based element orthogonal to
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in-plane deformations. In the context of inextensible fabrics, dis-
crete mean curvature approximates bending, yielding a quadratic
energy with a constant Hessian [Bergou et al. 2006; Wardetzky
et al. 2007]. The bending model introduced by Choi and Ko [2005b]
effectively encapsulates compression and buckling. Furthermore,
Kim [2020] unveiled the interconnections between the model pro-
posed by Baraff and Witkin [1998] and classical Finite Element
Method (FEM). Greater realism in cloth models can be achieved by
incorporating captured real-world data [Feng et al. 2022; Miguel
et al. 2012, 2013; Wang et al. 2011]. Simulating garments at the yarn
level, although computationally intensive, is feasible [Cirio et al.
2014; Kaldor et al. 2008], by condensing dynamics of individual yarn
strands. Transitioning this approach onto triangle meshes results
in much more tractable computations [Sperl et al. 2020].

2.2 Collision Handling
Developing accurate contact models is crucial in mechanics, robot-
ics, and computer graphics [Andrews et al. 2022; Johnson and John-
son 1987]. Traditional methods often handle contacts as constraint-
based linear complementarity problems (LCP) [Baraff 1994; Kauf-
man et al. 2008], resolved using projectedGauss-Seidel (PGS)method.
An alternate approach uses quadratic programming (QP) [Macklin
et al. 2020; Redon et al. 2002], compatible with more flexible solving
techniques like projected gradient descent [Mazhar et al. 2015],
mass splitting [Tonge et al. 2012], and the augmented Lagrangian
method [Takahashi and Batty 2021]. Penalty methods [Bridson
et al. 2002; Tang et al. 2012; Xu et al. 2014] are also employed to
handle complex self-contacts. In the context of PD, Ly et al. [2020]
introduced iterative refinement of contact forces during local steps.

While traditional methods mainly model contact through approx-
imated constraints utilizing signed distances or volumes, recent
approaches like the incremental potential contact (IPC) model [Li
et al. 2020] use precisely calculated unsigned distances for better ro-
bustness and accuracy. IPC approximates contact as a conservative
force with a barrier potential, providing a controllable efficiency-
accuracy tradeoff and ensuring penetration-free, convergent results
for general contacts of codimensional solids [Li et al. 2021], rigid
bodies [Ferguson et al. 2021; Lan et al. 2022a], hybrid multibody
systems [Chen et al. 2022], and FEM-SPH coupled domains [Xie
et al. 2023], etc. Despite its effectiveness, IPC’s computational bur-
den stems from the barrier function and the continuous collision
detection in each nonlinear solver iteration. Recent endeavors have
also concentrated on accelerating IPC through reduced-order mod-
els [Lan et al. 2021], projective dynamics [Lan et al. 2022b], block
coordinate descent [Lan et al. 2023], and time splitting [Wang et al.
2023; Xie et al. 2023], the majority of which also employ GPU ac-
celeration.

2.3 Subspace Simulation
Reduced-Order Modeling (ROM) offers a way to speedup the simu-
lation of deformable bodies by using linear subspaces [Barbič and
James 2005; Sifakis and Barbic 2012]. These subspaces, usually built
using modal analysis [Choi and Ko 2005c; Hauser et al. 2003; Pent-
land and Williams 1989] and its first-order derivatives [Barbič and
James 2005; Yang et al. 2015], simplify the model by removing less
critical degrees of freedom (DOFs). This approach finds application

in solids [An et al. 2008; Barbič and Zhao 2011; Yang et al. 2015],
fluids [Kim and Delaney 2013; Treuille et al. 2006], and computa-
tional design problems [Xu et al. 2015]. Alternative approaches
include geometric shape coarsening, akin to skin rigging to pre-
scribe the dynamics of a fine model. For instance, Capell et al. [2002]
deformed an elastic body using an embedded skeleton, Gilles et al.
[2011] employed 6-DOF rigid frames, Brandt et al. [2018]; Faure
et al. [2011] employed scattered handles, and Martin et al. [2010]
used sparsely-distributed integrators for rods, shells, and solids.

Recentwork has started to investigate nonlinear low-dimensional
manifolds for ROM, with neural networks being used to construct
these spaces [Lee and Carlberg 2020]. This approach can require
smaller latent space dimensions compared to linear methods [Ful-
ton et al. 2019; Shen et al. 2021]. There has also been significant
progress in data-driven latent space dynamics [Lusch et al. 2018],
with neural networks being used to learn the evolution of the entire
latent space [Wiewel et al. 2019]. To construct a subspace with
sparse basis for general cloth dynamics, we stick with linear sub-
spaces and use 2D B-spline functions as the building block.

3 BACKGROUND
In this section, we provide a brief overview of the Projective Dynam-
ics (PD) and Incremental Potential Contact (IPC) techniques, with
a specific focus on cloth simulation, to ensure self-containment.

3.1 Projective Dynamics for Cloth Simulation
In the absence of collision, the PD solver employs the following
optimization time integration for time stepping:

min
𝑥

1
2ℎ2 ∥𝒙−�̃� ∥

2
𝑀+𝐸mem

2
∑︁
𝑡

∥𝑭𝑡−𝑹 (𝑭𝑡 )∥2+𝐸bend2
∑︁
𝑒

∥𝒙 ∥2
𝑸𝑒

. (1)

Here, ℎ is the time step size, �̃� = 𝒙∗ + ¤𝒙∗ℎ + 𝑔ℎ2 is the predictive
position with 𝒙∗ being the current position, 𝑭𝑡 denotes the defor-
mation gradient of triangle 𝑡 , 𝑹 (𝑭 ) represents the closest rotation
matrix to 𝑭 , 𝐸mem and 𝐸bend correspond to the membrane stiffness
and bending stiffness, respectively, and 𝑸𝑒 is the local quadratic
bending stiffness matrix for inner edge 𝑒 , as outlined by Bergou
et al. [2006].

Rather than directly optimizing the energy equation (1), PD
decouples it by introducing auxiliary rotations 𝑹𝑘𝑒 for each triangle,
enabling optimization through a global-local alternating approach:

min
𝒙𝑘

1
2ℎ2 ∥𝒙

𝑘 − �̃� ∥2
𝑀 + 𝐸mem

2
∑︁
𝑡

∥𝑭𝑘
𝑡 − 𝑹𝑘

𝑡 ∥2 + 𝐸bend
2

∑︁
𝑒

∥𝒙𝑘 ∥2
𝑸𝑒

,

𝑹𝑘+1
𝑡 = 𝑹 (𝑭𝑘

𝑡 ) .
(2)

The global step involves solving a linear system with a fixed sys-
tem matrix 𝑯 = 1

ℎ2 𝑴 + 𝑲mem + 𝑲bend, where 𝑲mem, 𝑲bend are
membrane energy Hessian and bending energy Hessian at the rest
shape. The local step can be executed efficiently in parallel. This
alternating procedure continues until convergence is achieved. A
precomputed Cholesky factorization can be applied to solve the
global step. However, as the resolution increases, the computational
time grows significantly. Moreover, multiple updates are required
for the rotation matrices to ensure accuracy. To mitigate this, it
is common to solve the global step inexactly using a few or even
just one Jacobi iteration, while updating the rotation matrices as
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Algorithm 1 Timestepping of subspace-preconditioned PD
if it is the first time step then

Construct subspace basis sparse matrix P. ⊲ Sec. 4.2
Factorize the reduced-order global matrix P⊤𝑯P. ⊲ Sec. 4.3

end if
Update predictive position �̃� .
Run a reduced-order global step w.o. contact for an initial guess.
Construct quadratic barrier proxy at current state 𝒙∗.
Initialize subspace BFGS history.
while not converged do ⊲ Sec. 4.4.1

Run 2 iterations of subspace BFGS and update the history.
Run 5 fullspace Jacobi iterations.
Run PD local projections in parallel.

end while
Run penetration correction step. ⊲ Sec. 4.4.2

frequently as possible. To accelerate convergence, Chebyshev ac-
celeration techniques can be applied, as suggested by Wang [2015].
However, a substantial number of iterations are typically still re-
quired for high-resolution scenes.

3.2 Incremental Potential Contact
IPC [Li et al. 2020, 2021] is an approach that handles contact con-
straints using smooth log barriers on unsigned distances to ensure
separations between objects. It provides a robust method for pro-
cessing collisions, where the log barrier potential is included as an
additional energy term in the optimization-based time integration.
By combining continuous contact detection (CCD), IPC can guar-
antee that there are no penetrations as long as the initial placement
of objects is non-overlapping.

In the context of collisions between discrete meshes, collisions
are classified into point-triangle and edge-edge collisions. The con-
tact potential is defined as follows:

𝐵(𝑥) =
∑︁
𝑃,𝑇

𝑏 (dist(𝑃,𝑇 )) +
∑︁
𝐸1,𝐸2

𝑏 (dist(𝐸1, 𝐸2)), (3)

where 𝑏 is a smooth log barrier function of unsigned distance:

𝑏 (𝑑) =
{
−(𝑑 − 𝑑)2 log(𝑑/𝑑), 0 < 𝑑 < 𝑑,

0, 𝑑 ≥ 𝑑.
(4)

Here, (𝑃,𝑇 ) represents an arbitrary point-triangle pair, and (𝐸1, 𝐸2)
represents an arbitrary edge-edge pair. The candidate pairs can
be efficiently identified and filtered using bounding boxes. The
parameter 𝑑 controls the size of the contact zone. Inside this zone,
the energy tends to infinity as the contact pair gets closer to each
other, indicating the presence of contact forces. Outside the zone,
there are no contact forces, and objects are considered separated.
During the search for a energy-decreasing positional increment,
CCD is employed to find an upper bound on the step size, such that
when the step size is smaller, penetrations can always be avoided.

To incorporate frictional forces into the optimization, the IPC
method integrates a locally smoothed semi-implicit Coulomb fric-
tion into a potential energy. For each contact point 𝒙𝑘 with sliding

basis 𝑻𝑘 and normal contact force _𝑘 , the local friction is defined as

𝑓𝑘 (𝒙𝑘 ) = −`_𝑘𝑻𝑘 𝑓1 (∥𝒖𝑘 ∥)
𝒖𝑘
∥𝒖𝑘 ∥

, (5)

where ` is the frictional coefficient, 𝒖𝑘 is the relative tangential
velocity, 𝑓1 is a function smoothly increase from 0 to 1 in the region
[0, 𝜖𝑣ℎ] with 𝜖𝑣 controling the region of static friction.

4 METHOD
4.1 Algorithm Overview
Our subspace preconditioned PD pipeline is summarized in Algo-
rithm 1. We elaborate further details in the following subsections.

4.2 Construction of Subspace
Clothing items are typically
composed of several flat fabric
pieces, connected by stitches.
Taking this into account, it is
sufficient to utilize basis func-
tions defined in R2.

Suppose the cloth domain Ω
is divided intomultiple patches
interconnected by stitches:Ω =

∪𝑘
𝑖=1Ω𝑘 . For each cloth patch Ω𝑘 , we employ the As-Rigid-As-

Possible (ARAP) parameterization technique [Liu et al. 2008] to
obtain a bijective parameterization Ω̄𝑘 . In certain cases, additional
patch decompositions might be required to ensure bijectivity. Next,
we embed each Ω̄𝑘 into a regular 2D Cartesian grid and employ Ma-
terial Point Method (MPM) quadratic spline shape functions on the
grid points [Jiang et al. 2016] as the basis for one spatial dimension
of R3. Specifically, each basis is a product of two one-dimensional
quadratic B-splines and is discretized on mesh nodes (see the inset
figure):

𝐵𝑖 𝑗 (𝑋 ) = 𝑁 (𝑢/Δ𝑥 − 𝑖)𝑁 (𝑣/Δ𝑥 − 𝑗) . (6)

Here, (𝑖, 𝑗) denotes a grid index, 𝑢 and 𝑣 represent the parameter-
ization of 𝑋 , Δ𝑥 corresponds to the spline’s kernel size and the
spacing of the 2D grid, and 𝑁 (𝑥) is defined as:

𝑁 (𝑥) =


3
4 − 𝑥2, |𝑥 | < 1

2 ,
1
2 (

3
2 − |𝑥 |)2, 1

2 ≤ |𝑥 | < 3
2 ,

0, 3
2 ≤ |𝑥 |.

(7)

We decouple the three dimensions of the ambient space of Ω, mean-
ing that the complete sparse basis matrix P = B ⊗ I3 ∈ R3𝑀×3𝑁

is represented by the Kronecker product between the spline basis
matrix B ∈ R𝑁×𝑀 for scalar functions and the 3D identity matrix,
where𝑀 is the number of bases and 𝑁 is the number of vertices.

Given a reference state of mesh position 𝒙0, we express the states
in the subspace as {𝒙 : 𝒙 = 𝒙0 + P𝑦,𝑦 ∈ R3𝑀 }. The displacement
w.r.t. the reference state is constrained within the linear space
expanded by the bases in P. This basis satisfies the partition of
unity property and is 𝐶1-continuity w.r.t. the parameterization
space.

Bending on Stitch. If decompositions are necessary to achieve
non-overlapping parameterization, such as for a tube-shaped cloth,
we propose an approach to incorporate bending energy on the
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Without Stitch Bending

Stitch

With Stitch Bending

Figure 3: Stitch bending energies can recover bendings before
domain decompositions.

artificially generated stitches. As depicted in Figure 3, assume an
artificial stitch passing through the shared edge of two triangles,
namely (𝑣1, 𝑣2, 𝑣3) and (𝑣4, 𝑣5, 𝑣6). We introduce two bending en-
ergies, each with half of the original bending stiffness, on the 4-
stencils (𝑣1, 𝑣2, 𝑣3, 𝑣4) and (𝑣4, 𝑣5, 𝑣6, 𝑣1). By doing so, the original
energy is now split into two parts. As the stitch penalty pulls the
vertices 𝑣2 and 𝑣5, as well as 𝑣3 and 𝑣6, closer together, the com-
bined energy of these two parts will recover the energy prior to the
decomposition.

4.3 Subspace Projective Dynamics
In each global step, as described in Equation 2, we need to solve
a linear system 𝑯𝑢 = 𝒃 , where 𝑢 is the displacement increment
w.r.t. the previous global step 𝒙𝑘 . To optimize the quadratic energy
within the subspace, we can restrict the displacement to the form
𝒖 = P𝑦. This leads to solving a reduced-order global system

P⊤𝑯P𝑦 = P⊤𝒃 . (8)

Here, the reduced-order global system matrix �̂� = P⊤𝑯P has
a dimension that corresponds to the number of bases in P. This
dimension can be much smaller than the total number of degrees
of freedom. The advantage of this smaller matrix is that it can be
prefactorized using the Cholesky decomposition, enabling efficient
reuse for backsolving of Equation 8.

By exclusively solving the global step increment within the sub-
space, we effectively address the low-frequency modes that primar-
ily govern the overall motion of the cloth. However, this approach
tends to overlook the high-frequency details that showcase the ben-
efits of high-resolution meshes. To reintroduce the high-frequency
modes, we employ several Jacobi iterations on the original global
system 𝑯𝒖 = 𝒃 , starting from the displacement obtained through
the subspace solution. This two-level scheme bears a resemblance
to a two-level multigrid method, wherein P and P⊤ can be per-
ceived as the restriction and prolongation matrices, respectively.
Nevertheless, due to the necessity of a local projection step to up-
date the membrane rotation reference, the right-hand side of the
global linear system undergoes changes.

4.4 Subspace-Preconditioned Projective
Dynamics with Contact

We follow the same strategy of Xie et al. [2023] and incorporate
contact in a specifically designed time-splitting manner. At the
beginning of each time step, we introduce a quadratic proxy of
the contact potential into the PD solver, allowing for penetration.
Subsequently, an additional correction step is incorporated to fix
all penetrations while minimizing changes as much as possible.

4.4.1 PD with Quadratic Contact Proxy. The quadratic proxy is
defined as the second-order expansion of the barrier potential at
the initial state 𝒙∗ of the current time step:

�̂�(𝒙 ; 𝒙∗) = 𝐵(𝒙) + ∇𝐵(𝒙∗)⊤ (𝒙 − 𝒙∗) + 1
2 ∥𝒙 − 𝒙∗∥2

∇2𝐵 (𝒙∗ ) . (9)

By combining this quadratic proxy, the global system of the PD
solver is still linear:

(𝑯 + ∇2𝐵(𝒙∗))𝒖 = 𝒃 − ∇𝐵(𝒙∗) − ∇2𝐵(𝒙∗) (𝒖 + 𝒙𝑘 − 𝒙∗), (10)
where 𝑯𝒖 = 𝒃 represents the global step system without contact.

However, the global system matrix is subject to change over
time. To reuse the prefactorized matrix obtained without contact,
we employ subspace BFGS iterations to minimize the quadratic
energy of the global step within the subspace, i.e., we solve the
quadratic problem with the increment constrained to the subspace.
It is important to note that the subspace global matrix is now:

P⊤ (𝑯 + ∇2𝐵(𝒙∗))P = P⊤𝑯P⊤ + P⊤∇2𝐵(𝒙∗)P⊤ . (11)
The prefactorized matrix P⊤𝑯P can serve as the initial approx-
imation of the Hessian for the subspace BFGS iterations at the
beginning of each time step. Importantly, the global system matrix
remains unchanged within a single time step, allowing for the reuse
of BFGS history across different global steps within the time step.
To ensure efficiency, we limit the number of BFGS iterations to 2 in
each global step, effectively providing only one additional 2-rank
update to the initial reduced-order Hessian matrix based on previ-
ous updates. For quadratic problems, the optimal step size for line
search can be computed analytically, requiring only one matrix-
vector multiplication. It is worth mentioning that at the begining
of the global-local alternations, we solve one reduced-order global
step, where one backsolve using the prefactorized subspace global
system can give us the exact solution. This initial guess significantly
decreases the number of PD iterations.

Following the subspace BFGS iterations, we perform 5 block-
diagonal Jacobi iterations on the original full-order linear system
(Eq. 10) to enrich high-frequency details in the solution. This choice
aligns with the common practice of multigrid, which incorporates
3–5 smoothing iterations per cycle. The block size is 3 because all
matrices are assembled with 3×3 blocks, during which the diagonal
blocks are tracked. However, with contact proxy stiffness matrix,
the eigenvalue of the iteration matrix can easily exceed 1. Here
we use a modified Jacobi with automatically tuned weight. We ob-
serve that each naive Jacobi iteration is essentially a block-diagonal
preconditioned gradient descent for the corresponding quadratic
problem. The steepest descent step size can be analytically com-
puted as discussed above. We use that step size as the weight for
each Jacobi iterations. This can make sure that the energy for the
global step in Equation 2 is always decreasing.

In summary, each global step of our solver consists of 2 L-BFGS
iterations and 5 Jacobi iterations. The PD phase is terminated if
the 𝐿-infinity distance between states from two consecutive global
steps falls below a given tolerance (5 × 10−3ℎ in our expriments
with time step size ℎ), or if the maximum number of iterations is
reached (200 in our experiments). Additionally, we apply Cheby-
shev acceleration to the global steps, following Liu et al. [2017];
Wang [2015], to accelerate convergence. Empirically, we found that
Chebyshev weight 0.99 worked well across all our examples.
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4.4.2 Penetration Correction. The above PD solver may provide a
trial solution 𝑥 tr with penetrations. To resolve these penetrations,
we solve the following energy minimization using projected New-
ton method combined with a non-penetration line search, following
the approach used in the IPC framework:

1
2ℎ2 ∥𝑥 − 𝑥 tr∥2

𝑀 + 𝐵(𝑥). (12)

This objective function aims to find a balance between the trial
state from PD and the collision constraints. Unlike the original
IPC, which solves the linear system in the Newton method with
Cholesky factorization, we employ a block-diagonal preconditioned
conjugate gradient (PCG) method to solve the system. On GPUs,
iterative solvers are generally much faster than direct solvers. Fur-
thermore, we use a smaller contact stiffness than the quadratic
proxy. The stiffness for the proxy is slightly lower than the elastic-
ity stiffness, while in penetration correction, the value is adjusted
to 0.01×. This adjustment can reduce the condition number of the
nonlinear optimization problem, facilitating faster convergence.

We also propose an early-stop strategy to reduce the number
of Newton iterations required in this step. The objective of this
phase is to resolve collisions while preserving momentum as much
as possible. By observing this, we can increase the tolerance for
DOFs that are involved in contacts, while focusing on preserving
momentum primarily for DOFs that are not in contact. By prioritiz-
ing momentum preservation for non-contact DOFs and allowing
for a slightly larger tolerance for contact DOFs, we can reduce the
number of Newton iterations required in the penetration resolution
step while still achieving satisfactory results. In our experiments,
the tolerances on non-contact DOFs and contact DOFs are 10−2ℎ
and 10−1ℎ respectively.

4.4.3 Friction. We also introduce an approach designed specifi-
cally for our time-splitting contact model incorporating frictional
effects. This model utilizes the Hessian of the frictional energy as a
damping matrix. We note that the friction coefficient ` no longer
holds a physical meaning but still controls the magnitude of the
frictional forces. In this friction proxy, we expand the frictional
contact potential at 𝑥𝑘 = 𝑥∗

𝑘
+ 10ℎ𝜖𝑣 ¤𝑥∗𝑘/∥ ¤𝑥

∗
𝑘
∥, and remove the con-

tributions of tangential velocities smaller than 𝜖𝑣 . That is, we only
adopt dynamic friction Hessians for damping along the tangential
directions. Our fuzzy friction proxy can be seamlessly integrated
into the contact proxy and incorporated into the PD solve loops
using the BFGS algorithm.

5 GPU IMPLEMENTATION
Our algorithm has been implemented to run efficiently on a sin-
gle GPU using CUDA 12.1. To avoid write-write conflicts during
the assembly of global gradients and Hessian matrices, we did not
utilize coloring algorithms like the one proposed in Fratarcangeli
et al. [2016]. Instead, we found that using atomic add operations on
our GPU was already efficient enough and simpler to implement.
For matrix-vector products in the Jacobi solver, CG method, and
subspace restriction/prolongation, we employed cuSPARSE, a li-
brary for efficiently performing operations on compressed sparse
row (CSR) matrices in CUDA. In addition, the dense Cholesky fac-
torization of P⊤𝑯P was implemented using cuSOLVER, which
enabled efficient factorization of the reduced-order global matrix.

Newton Ours  Jacobi (3000)  Jacobi (2000)  Jacobi (1000)
15.3s/frame 3.0s/frame 39.3s/frame 26.2s/frame 13.6s/frame

Figure 4: The comparison between our method and Wang
[2015] on a cloth hanging experiment. The cloth used in
the experiment consists of 250K vertices and 500K triangles.
Our method demonstrates closer agreement with the results
obtained using Newton’s method, but is much faster.

At each Newton iteration during the penetration correction, CCD is
required on each search direction to guarantee non-penetration. We
use the patch-based GPU collision culling from Lan et al. [2022b]
to efficiently reduce the number of candidates.

6 EXPERIMENT
We implemented our algorithm on a desktop workstation with an
NVIDIA RTX 3090 GPU and an Intel Core i9-10920X 3.5-GHz CPU
with 12 cores. We also follow [Macklin et al. 2019] using simulation
substeps for optimized performance.

6.1 Compare with Chebyshev-Accelerated
Jacobi-PD

We compare ourmethodwith [Wang 2015], a classic GPU-accelerated
PD algorithm using Jacobi method to solve the global system inex-
actly. In this test, we simulate a piece of table cloth (250K vertices,
500K triangles) with two upper corners fixed. Here, we exclude colli-
sion and self-collision processing in both methods to only showcase
the performance-wise difference. For the method described inWang
[2015], we performed three separate experiments with 1,000, 2,000,
and 3,000 Jacobi iterations, respectively. We also simulate the scene
using Newton’s method as the reference. The results of the compar-
ison are illustrated in Figure 4. Even with 3,000 iterations, Wang
[2015] exhibits more discrepancies with Newton’s results compared
to our method. Furthermore, our method demonstrates faster com-
putation times compared to Wang [2015] when utilizing only 1000
iterations, despite the presence of artifacts in their results.

6.2 Compare with Hyper-Reduced Projective
Dynamics

Our work differs from hyper-reduced PD (HRPD) [Brandt et al.
2018] in several key aspects. The subspace design in our method is
tailored for cloth and shell structures, whereas HRPD targets volu-
metric solids. Additionally, we solve the full-order system, while
HRPD directly simulates within the reduced subspace. Furthermore,
the B-spline bases in our approach inherently satisfy partition of
unity on regular grids. This is advantageous for simulating cloth, as
HRPD bases lack this property. To demonstrate, we compare HRPD
to our method by directly simulating the subspace dynamics with-
out Jacobi relaxation (ours used 1200 bases, while HRPD used 1497



Subspace-Preconditioned GPU Projective Dynamics with Contact for Cloth Simulation SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
O
u
r
s

H
R
P
D

Figure 5: Our B-spline bases on regular grids naturally satisfy
the property of partition of unity, while hyper-reduced bases
[Brandt et al. 2018] does not, leading to severe locking under
large deformations.

bases). As shown in Fig. 5, the hyper-reduced subspace exhibits
severe locking under large deformations, while our method does
not.

6.3 Ablation Study
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6.3.1 Convergence Under Re-
finement. To evaluate the accu-
racy of our cloth solver, we per-
form a convergence under re-
finement test w.r.t. the time step
size ℎ. We begin by capturing
a contact-rich snapshot of the
"cloth on sphere" experiment
and using it as the initial state.
We then simulate with CIPC us-
ing ℎ=1e-4 for a duration of 0.1
seconds. The final state obtained from the CIPC simulation serves
as the reference. We then use our cloth solver to simulate with
consecutively halved time steps, starting from ℎ = 0.01𝑠 , in order
to estimate the convergence order of the 𝐿2-error to the reference.
Shown in the inset figure, the estimated convergence order is 1.11.
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6.3.2 Number of Spline Bases.
The rate of convergence in the
PD phase depends on the num-
ber of spline bases. In our analy-
sis, we take a contact-rich snap-
shot and focus on a single sub-
step. The outcome from the
CIPC solver serves as the ref-
erence state, against which we
evaluate the convergence of our
BFGS-based PD solver across
varying numbers of spline bases. In our framework, the number of
spline bases is controlled by the spacing between spline centers. As
depicted in the inset figure, a smaller spline spacing Δ𝑥 typically
leads to less iterations for convergence. However, extremely small
Δ𝑥 values can result in too much computational time of the back-
solve step on GPU. We estimated that this component’s timing is
approximately 𝑂 ( 1

Δ𝑥
1.9). Despite efforts, we haven’t identified an

optimal empirical compromise between timing and PD convergence

Table 1: Average computational cost per frame (s) in the com-
parisons.

Experiment #V 𝑑 (m) #Basis #Sub-
step Ours PD Step

Percentage
GPU
CIPC CIPC PD-IPC

Ribbons 285K 2e-4 7119 16 46 43.3% 1033 1579 134
Cloth on sphere 252K 1e-4 8427 8 27 37.2% 241 2040 49

Funnel 232K 5e-4 9432 10 23 63.3% 362 2740 253
Reef knot 104K 3e-4 7665 8 10 81.9% 90 144 18

speed. Nevertheless, maintaining the number of bases slightly be-
low 10K for a 100K-vertex cloth tends to yield favorable overall
speedups.

6.4 Benchmarks
We further compare our method with two known IPC-based cloth
simulation methods, namely CIPC [Li et al. 2021] and PD-IPC [Lan
et al. 2023], in multiple high-resolution cloth simulation setups.
The original CIPC implementation was on the CPU, which is quite
expensive. To avoid misleading benchmarks from different plat-
forms, we re-implemented CIPC on the GPU, and we refer to our
own implementation as GPU CIPC. GPU CIPC port most costly
computations to CUDA including collision detection, culling, CCD,
and Newton solve, and it already exhibits notable performance
gains compared to its CPU counterpart. Nevertheless, our method
(proposed in this paper) offers further speedups. PD-IPC is our clos-
est competitor as it is also based on the PD. However, they utilize
simplified formulations for the membrane and bending energies
compared to our method. We made best efforts to visually match
their results with ours under the same numerical settings.

In the comparative analysis, we used a frame duration of 0.04s.
We try our best to tune the time step size to ensure a fair comparison
of performance among different methods. In the case of CPU IPC,
the most efficient time step size is typically the frame duration.
This is because the direct solver used in CPU IPC is not sensitive
to the condition numbers of the Hessian matrix. However, for most
iterative methods, including ours, substepping is beneficial they
are more dependent on the condition numbers of the problem. The
per-frame computational costs of different approaches are listed in
Table 1.

Ribbons (Figure 6). We simulate the behavior of 21 long ribbons
dropped into a bowl. The ribbons interact with each other, result-
ing in multiple collisions and self-collisions. In this example, we
achieve 22× acceleration compared to GPU CIPC, 34× acceleration
compared to CPU CIPC, and 2.9× acceleration compared to PD-IPC.
We note that PD-IPC utilizes simplified strain and bending mod-
els. In this example, it is not able to capture fine-detailed wrinkles,
resulting in fewer contact interactions compared to our method.

Cloth on sphere (Figure 8). A square cloth is dropped onto a
sphere, with a ground surface located beneath the sphere. There
are persistent contact between the center of cloth with the top of
shpere, and persistent contact between the cloth and the ground.
The contact results in numerous intricate wrinkles. We achieve 8.9×
acceleration compared to GPU CIPC, 75× acceleration compared to
CPU CIPC and 1.8× acceleration with PD-IPC.
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Funnel (Figure 7). To evaluate the robustness of our contact han-
dling, we conduct a test involving three pieces of cloth dropped
onto a shallow funnel. As a scripted sphere passed through the
hole of the funnel at a constant speed, multiple collisions occurred
between the layers of cloth and between the cloth and the funnel.
This scenario presented a significant challenge due to the substan-
tial compression experienced by the cloth while passing through
the hole. In this example, our method exhibited remarkable per-
formance gains compared to other approaches. Specifically, we
achieved a 15× acceleration compared to GPU IPC, a 119× accel-
eration compared to CPU IPC, and an 11× acceleration compared
to PD-IPC. These results highlight the robustness and efficiency of
our contact handling technique in challenging cloth simulations.

Reef knot (Figure 9). Two curved ribbons are initially intertwined
and then pulled in opposite directions to form a knot. It is worth
mentioning that, to apply our method, each ribbon is decomposed
into three pieces combined with stitch bendings, as depicted in
Figure 3. Our method manages to generate a tiny and tight knot.
And we achieve 9× accelerateion comapred to GPU-IPC, 14× accel-
eration compared to CPU IPC, and 1.8× acceleration compared to
PD-IPC.

6.5 Example with Stitch Bending
Some shapes needs artificial decompositions to obtain 2D ARAP pa-
rameterizations, such as a cylinder. Here we simulated a cylindrical
cloth mesh, which is decomposed into two pieces. Stitch bending is
critical for preserving the correct bending stiffness along the artifi-
cially generated seam, which does not exist on the original cloth
surface. Without stitch bending, the cloth exhibits an unrealistically
large fold along the seam, as shown in Fig. 10.

6.6 Controllable Friction
In Figure 11, we present an experiment where we vary the friction
coefficients between the cloth and the slope. The cloth used in the
experiment is a long rectangle with 120K vertices, and it falls onto
the slope under gravity. By increasing the friction coefficient, we
observe that the cloth slides down the slope at a slower speed until
it gets stuck and then undergoes turning motions.

6.7 Garment Animation
Fine-detailed garment simulations play a crucial role in the anima-
tion industry. In the animation pipeline, artist-designed character
animation sequences serve as moving boundary conditions for the
cloth simulations. However, simulating garments on animated char-
acters presents significant challenges due to the dramatic motions
involved, such as running, jumping, or dancing. Here we use a
challenging test case from Li et al. [2021], where a character turns
and kicks wearing a multi-layer dress (Figure 1). We subdivided the
original testing garments to 120K vertices. The leg causes the dress
moving in a high speed and there are intricate interactions between
layers of the dress. Our method can robustly handle these colli-
sions and resolve complex wrinkles on the cloth, with an average
running time of 23 seconds per frame. This is a 6.5× acceleration
compared to the GPU IPC method, highlighting the effectiveness
and efficiency of our approach in handling fine-detailed garment
simulations in complex animation scenarios.

7 CONCLUSION
In this paper, we propose an efficient cloth simulation method based
on the projective dynamics (PD) framework. Our method combines
subspace integration and parallelizable iterative relaxation tech-
niques to effectively reduce both high-frequency and low-frequency
residuals, leading to significantly improved convergence. We seam-
lessly integrate our method with the state-of-the-art contact han-
dling framework, IPC, to ensure interpenetration-free results in a
time-splitting manner. We have shown that our method has sig-
nificant performance improvements over existing GPU solvers for
high-resolution cloth simulation.

Indeed, when dealing with objects exhibiting high speeds, the
time splitting error can become significant, leading to amplified
damping effects. To address this issue, it would be valuable to ex-
plore adaptive substepping techniques that can enhance the ac-
curacy of the time splitting process and alleviate the undesired
damping artifacts.

Furthermore, the use of Newton’s method in the penetration
correction step may give rise to overshooting problems, result-
ing in excessive optimization iterations. Notably, the penetration
correction step typically consumes a substantial portion of the com-
putation time. To further improve the overall performance of our
algorithm, it is crucial to investigate dedicated solvers specifically
tailored for the penetration correction step.
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Figure 6: Ribbons. Twenty-one long ribbons are dropped into a round bowl, leading to numerous collisions and self-collisions
among the ribbons.

Figure 7: Funnel. Three pieces of cloth are dropped onto a shallow funnel. A sphere pushes the layers of cloth completely
through the hole of the funnel.

Figure 8: Cloth on sphere. A square cloth is dropped onto a sphere and form numerous intricate wrinkles. PD-IPC utilizes
simplified strain and bending models, resulting in inability to capture fine-detailed wrinkles.

Figure 9: Reef knot. Two curved ribbons are initially intertwined and then pulled in opposite directions to form a tiny and
tight knot.



SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia X. Li, Y. Fang, L. Lan, H. Wang, Y. Yang, M. Li, C. Jiang.
W

it
h

 S
ti

tc
h

 B
en

d
in

g
W

it
h

o
u

t 
S
ti

tc
h

 B
en

d
in

g

Figure 10: Stitch bending is critical for preserving the correct
bending stiffness along the artificially generated seam, which
does not exist on the original cloth surface.

Figure 11: Controllable friction. Three pieces of 120K-node
long rectangle cloth fall onto the slope under gravity. With
larger friction coefficients (closer to the camera), the cloth
slides down the slope at a slower rate until it gets stuck and
then undergoes turning motions.
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