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ABSTRACT

Existing approaches to system identification (estimating the physical parameters
of an object) from videos assume known object geometries. This precludes their
applicability in a vast majority of scenes where object geometries are complex or
unknown. In this work, we aim to identify parameters characterizing a physical
system from a set of multi-view videos without any assumption on object geome-
try or topology. To this end, we propose “Physics Augmented Continuum Neural
Radiance Fields” (PAC-NeRF), to estimate both the unknown geometry and phys-
ical parameters of highly dynamic objects from multi-view videos. We design
PAC-NeRF to only ever produce physically plausible states by enforcing the neu-
ral radiance field to follow the conservation laws of continuum mechanics. For
this, we design a hybrid Eulerian-Lagrangian representation of the neural radi-
ance field, i.e., we use the Eulerian grid representation for NeRF density and color
fields, while advecting the neural radiance fields via Lagrangian particles. This
hybrid Eulerian-Lagrangian representation seamlessly blends efficient neural ren-
dering with the material point method (MPM) for robust differentiable physics
simulation. We validate the effectiveness of our proposed framework on geometry
and physical parameter estimation over a vast range of materials, including elastic
bodies, plasticine, sand, Newtonian and non-Newtonian fluids, and demonstrate
significant performance gain on most tasks1.

1 INTRODUCTION

Inferring the geometric and physical properties of an object directly from visual observations is a
long-standing challenge in computer vision and artificial intelligence. Current machine vision sys-
tems are unable to disentangle the geometric structure of the scene, the dynamics of moving objects,
and the mechanisms underlying the imaging process – an innate cognitive process in human per-
ception. For example, by merely watching someone kneading and rolling dough, we are able to
disentangle the dough from background clutter, form a predictive model of its dynamics, and esti-
mate physical properties, such as its consistency to be able to replicate the recipe. There exists a
large body of work on inferring the geometric (extrinsic) structure of the world from multiple im-
ages (e.g., structure-from-motion (Hartley & Zisserman, 2003)). This has been bolstered by recent
approaches leveraging differentiable rendering pipelines (Tewari et al., 2022) and neural scene repre-
sentations (Xie et al., 2022), unlocking a new level of performance and visual realism. On the other
hand, approaches to extract the physical (intrinsic) properties (e.g., mass, friction, viscosity) from
images are yet nascent (Jatavallabhula et al., 2020; Ma et al., 2021; Jaques et al., 2022; 2020) – all
assume full knowledge of the geometric structure of the scene, thereby limiting their applicability.

The key question we ask in this work is “can we recover both the geometric structure and the physi-
cal properties of a wide range of objects from multi-view video sequences”? This dispenses with all

∗This work was done during an internship at the MIT-IBM Watson AI Lab
1Demos are available on the project webpage: https://sites.google.com/view/PAC-NeRF

1

https://sites.google.com/view/PAC-NeRF


Published as a conference paper at ICLR 2023

of the assumptions made by state-of-the-art approaches to video-based system identification (known
geometries in Ma et al. (2021) and additionally rendering configurations in Jatavallabhula et al.
(2020)). Additionally, the best performing approaches to recover geometries (but not physical prop-
erties) of dynamic objects in videos include variants of neural radiance fields (NeRF) (Mildenhall
et al., 2020), such as (Pumarola et al., 2021; Tretschk et al., 2021; Park et al., 2021). However, all
such neural representations of dynamic scenes need to learn object dynamics from scratch, requiring
a significant amount of data to do so, while also being uninterpretable. We instead employ a differ-
entiable physics simulator as a more prescriptive, data-efficient, and generalizable dynamics model;
enabling parameter estimation solely from videos.

Our approach—Physics Augmented Continuum Neural Radiance Fields (PAC-NeRF)—is a novel
system identification technique that assumes nothing about the geometric structure of a system.
PAC-NeRF is extremely general – operating on deformable solids, granular media, plastics, and
Newtonian/non-Newtonian fluids. PAC-NeRF brings together the best of both worlds; differentiable
physics and neural radiance fields for dynamic scenes. By augmenting a NeRF with a differentiable
continuum dynamics model, we obtain a unified model that estimates object geometries and their
physical properties in a single framework.

Specifically, a PAC-NeRF F is a NeRF, comprising a volume density field and a color field, coupled
with a velocity field v that admits the continuum conservation law: DF

Dt = 0 (Spencer, 2004). In
conjunction with a hybrid Eulerian-Lagrangian formulation, this allows us to advect geometry and
appearance attributes to all frames in a video sequence, enabling the specification of a reconstruc-
tion error in the image space. This error term is minimized by gradient-based optimization, lever-
aging the differentiability of the entire computation graph, and enables system identification over
a wide range of physical systems, where neither the geometry nor the rendering configurations are
known. Our hybrid representation considerably speeds up the original MLP-based NeRF by efficient
voxel discretization Sun et al. (2022), and also conveniently handles collisions in continuum simula-
tions, following the MPM pipeline Jiang et al. (2015). The joint differentiable rendering-simulation
pipeline with a unified Eulerian-Lagrangian conversion is highly optimized for high-performance
computing on GPU.

In summary, we make the following contributions.

• We propose PAC-NeRF – a dynamic neural radiance field that satisfies the continuum conserva-
tion law (Section 3.1).

• We introduce a hybrid Eulerian-Lagrangian representation, seamlessly blending the Eulerian
nature of NeRF with MPM’s Lagrangian particle dynamics. (Section 3.3).

• Our framework estimates both the geometric structure and physical parameters of a wide variety
of complex systems, including elastic materials, plasticine, sand, and Newtonian/non-Newtonian
fluids, outperforming state-of-the-art approaches by up to two orders of magnitude. (Section 5).

2 RELATED WORK

Neural radiance fields (NeRF), introduced in Mildenhall et al. (2020), are a widely adopted tech-
nique to encode scene geometry in a compact neural network; enabling photo-realistic rendering and
depth estimation from novel views. A comprehensive survey of neural fields is available in Xie et al.
(2022). In this work, we adopt the voxel representation proposed by Sun et al. (2022) as these do
not require positional information and naturally fit the Eulerian stage of the Material Point Method
(MPM) used in our physics prior.

For perception of dynamic scenes, Li et al. (2021) introduce forward and backward motion fields
to enforce consistency in the representation space of neighboring frames. D-NeRF (Pumarola et al.,
2021) introduces a canonical frame with a unique neural field for densities and colors, and a time-
dependent backward deformation map to query the canonical frame. This representation has since
been adopted in Tretschk et al. (2021) and Park et al. (2021). Chu et al. (2022) targets smoke scenes
and advects the density field by the velocity field of smoke. This method does not deal with boundary
conditions, so it cannot model solids and contact. Guan et al. (2022) present a combination of NeRF
with intuitive fluid dynamics leveraging neural simulators; whereas we provided a principled, and
interpretible simulation-and-rendering framework.

2



Published as a conference paper at ICLR 2023

 Random sampling

Static Voxel NeRF

Voxel Volume
   Rendering

Lagrangian

Eulerian

Loss

Ground Truth

Voxel Volume
   Rendering

G2P

P2G

P2G

Advections
(DiffMPM)

Loss

(R, T, K)

(R', T', K')

Physical Params

Figure 1: PAC-NeRF uses both Lagrangian (particle; material-space) and Eulerian (grid; world-space) rep-
resentations for an accurate yet tractable computational model of continuum materials. P2G and G2P denote
particle-to-grid and grid-to-particle transforms, respectively. Renderable quantities (volume densities, colors)
are represented in the world space (first frame) using a voxel NeRF (Sun et al., 2022). These quantities are
bound to particles (by a sampling scheme) whose dynamics are simulated by using a differentiable material
point method (MPM) (Jiang et al., 2015). The (Eulerian) voxel representation enables efficient collision han-
dling and rendering. Since the entire simulation and rendering pipeline are differentiable, rendered (color)
images are able to optimize both the geometric and physical properties of objects. PAC-NeRF (1) accelerates
NeRF rendering with Eulerian representation, (2) lends physical plausibility, interpretability, and data efficiency
in dynamic scenes, and (3) enables physical parameter estimation for continuum materials.

System identification of soft bodies is an extremely challenging task, owing to its high dimension-
ality and the presence of large deformations. Neural (Sanchez-Gonzalez et al., 2020; Li et al., 2019;
Xu et al., 2019) or gradient-free methods (Wang et al., 2015; Takahashi & Lin, 2019) struggle to
achieve high accuracy on these problems, owing to their black-box nature. Recent progress in dif-
ferentiable physics simulation has demonstrated great promise Qiao et al. (2021); Du et al. (2021);
Rojas et al. (2021); Geilinger et al. (2020); Heiden et al. (2021); Jatavallabhula et al. (2020); Ma
et al. (2021), but assumes that watertight geometric mesh representations of objects are available.
Recently, Chen et al. (2022) estimate elastic object properties from videos. Our hybrid representa-
tion and simulation-rendering is general, and speeds up neural rendering by two orders of magnitude.

We use the Material Point Method (MPM) due to its ability to handle topology changes and fric-
tional contacts; allowing the simulation of a wide range of materials, including elastic objects,
sand (Klár et al., 2016), to fluids (Jiang et al., 2015) and foam (Yue et al., 2015). While MPM
has previously been used for differentiable physics simulation (Hu et al., 2020; Huang et al., 2021;
Fang et al., 2022), a watertight, non-degenerate mesh model was assumed to be available. Our
method solves the long-standing challenge of perceiving geometric and physical properties solely
from videos.

3 METHOD

Problem specification: Given a set of (posed) multi-view videos of a dynamic scene, we aim to re-
cover (1) an explicit geometric representation, and (2) physical properties (such as Young’s modulus,
fluid viscosity, friction angles, etc.) of the dynamic object of interest.

Unlike existing system identification methods that operate on images, we do not require known ob-
ject geometries. Our approach is general and works on a wide range of material types (fluids, sand,
plasticine, etc.). Our proposed approach, Physics Augmented Continuum Neural Radiance Fields
PAC-NeRF, seamlessly blends neural scene representations and explicit differentiable physics en-
gines for continuum materials. The core components of PAC-NeRF include a continuum NeRF, a
particle-grid interconverter, and a Lagrangian field. We detail these in this section (see Figure 1).

3.1 CONTINUUM NEURAL RADIANCE FIELDS

Recall that a (static) NeRF comprises a view-independent volume density field σ(x) and a view-
dependent appearance (color) field c(x, ω) for each point x ∈ R3, and directions ω = (θ, ϕ) ∈
S2 (spherical coordinates). A dynamic (time-dependent) NeRF extends the fields above with an
additional time variable t ∈ R+, denoted σ(x, t) and c(x, ω, t) respectively. We use the efficient
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voxel discretization from Sun et al. (2022) to specify a dynamic Eulerian (world-frame) NeRF.
Color images are rendered from the above time-dependent fields by sampling points along a ray, for
each pixel in the resultant image. The appearance C(r, t) of a pixel specified by ray direction r(s)
(s ∈ [smin, smax]) is given by the volume rendering integral (Mildenhall et al., 2020)

C(r, t) =

∫ sf

sn

T (s, t) σ(r(s), t) c(r(s), ω, t) ds+ cbg T (sf , t), T (s, t) = exp

(
−
∫ s

sn

σ(r(s̄), t) ds̄

)
(1)

The dynamic NeRF can be trained by enforcing the rendered pixel colors to match those in the video.

Lrender =
1

N

N−1∑
i=0

1

|R|
∑
r∈R

∥C(r, ti)− Ĉ(r, ti)∥, (2)

where N is the number of frames of videos, Ĉ(r, t) is the ground truth color observation.

Additionally, we enforce that the appearance and volume density fields admit conservation laws
characterized by the velocity field of the underlying physical system:

Dσ

Dt
= 0,

Dc

Dt
= 0, (3)

with Dϕ
Dt = ∂ϕ

∂t + v · ∇ϕ being the material derivative of an arbitrary time-dependent field ϕ(x, t).
Here, v is a velocity field, which in turn must obey momentum conservation for continuum materials

ρ
Dv

Dt
= ∇ · T + ρg, (4)

where ρ is the physical density field, T is the internal Cauchy stress tensor, and g is the acceler-
ation due to gravity. We use the differentiable Material Point Method (Hu et al., 2020) to evolve
Equation (4).

3.2 PARTICLE-GRID INTERCONVERTERS

While a Lagrangian representation is ideal for advection by the material point method (MPM), an
Eulerian frame is required for rendering the advected particle states to image space. We therefore
employ a hybrid representation to blend the best of both worlds. A key requirement is to be able to
seamlessly traverse the Eulerian (grid) view to the Lagrangian (particle) view (and vice versa).

Denoting the Eulerian and Lagrangian views G and P respectively, a field FG
∗ (t) = {σ(x, t), (̧x, t)}

at time t may be interconverted as follows:

FP
p ≈

∑
i

wipFG
i , FG

i ≈
∑

p wipFP
p∑

p wip
, (5)

where i indices grid nodes and p indices particles, and wip is the weight of the trilinear shape
function defined on node i and evaluated at the location of particle p. We use P2G and G2P to
denote the particle-to-grid and grid-to-particle conversion processes respectively.

3.3 LAGRANGIAN FIELD

An Eulerian voxel field FG(t0) is initialized over the first frame of the sequence. From this field,
we use the G2P process to obtain a Lagrangian particle field FP (t0). We advect this field using
an initial guess physical parameter set Θ and the material point method (Equation (3)) to obtain
FP (t1) at t1 = t0 + δt (where δt is the duration of each simulation timestep). The advected field is
then mapped to the Eulerian view using the P2G process, resulting in FG(t1), which is employed
for collision handling and neural rendering. The Eulerian voxel grid representation used here is at
least two orders of magnitude (100×) faster in terms of image rendering time (Sun et al., 2022).

Following Sun et al. (2022), the rendering density field σ and color field c at time t are:

σ(x, t) = softplus(Interp(x, σ̂)), c(x,d, t) = MLP(Interp(x, ĉ),d), (6)

where σ̂ is a scalar field and ĉ is a vector field, both are discretized on a fixed voxel grid. Interp(·)
denotes trilinear interpolation. Advection is performed by first advecting the grids σ̂ and ĉ, followed
by computing the interpolation functions and evaluating the MLP (or the softplus).
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The initialization of forward simulation requires generating Lagrangian representations of σ̂ and ĉ.
We randomly sample 8 particles within each voxel grid and use Equation (5) to bind the density
and color values onto particles. Additionally, we associate with each particle a scalar value αp =

1−e− softplus(σ̂p) in (0, 1). A lower α value denotes a smaller contribution to the radiance fields. We
make particles with lower values of α softer by scaling the physical density field ρ (Equation (4))
and the physical stress field T by a factor α3. We remove a particle p if αp < ϵ maxp αp, where
we set ϵ = 10−3 as a constant threshold.

3.4 PAC-NERF FOR GEOMETRY-AGNOSTIC SYSTEM IDENTIFICATION

Our pipeline for geometry-agnostic system identification comprises three distinct phases for com-
putational tractability. We first preprocess data using video matting techniques to extract foreground
objects of interest. This is followed by a geometry seeding phase, where we employ a coarse-to-
fine approach to recover object geometry. The extracted geometry is then used to perform system
identification by rendering out future video frames based on a guessed set of physical properties,
computing an error term with respect to the true videos, and updating the physical properties by
gradient-based optimization.

Data Preprocessing: We assume a set of static cameras with known intrinsics and extrinsics. To
focus rendering computation on the object of interest, we run the video matting framework in Lin
et al. (2021) to remove static background objects. This also provides us with a segmentation mask
of the foreground object of interest.
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Figure 2: Our surface regularizer im-
proves reconstruction quality, by pro-
ducing a tight-fit shape to the segmen-
tation mask.

Geometry Seeding: We first obtain a coarse geometry of the
foreground object(s) of interest by employing the static voxel
fields. The contents of the foreground segmentation mask are
rendered to produce an appearance loss term optimized using
gradient descent. We employ a coarse-to-fine strategy to en-
able easier optimization. We noticed that, as opposed to di-
rectly rendering the initial voxel radiance field, running the
G2P converter followed by a P2G converter ensures that ren-
dering for all the frames (including the initial frame) is consis-
tently based on the same group of particles (implicitly provid-
ing a set of consistent correspondences across time). In addi-
tion to the rendering loss Equation (2), we employ a surface
regularizer to regularize the geometric density field:

Lsurf =
∑
p

clamp(αp, 10
−4, 10−1)(

∆x

2
)2. (7)

This regularizer minimizes the total surface area, and as shown in Figure 2, this tends to improve
the quality of reconstructed geometries by making the reconstructed point cloud more compact and
fit the ground truth boundary more closely.

System Identification: Upon convergence of the geometry seeding phase, we freeze the parame-
ters of the field (for the initial time step t0). To minimize scenarios where one or more variables
of interest become unobservable under unknown initial conditions, we use the first 2-3 frames to
estimate the initial velocity of observed particles. We then optimize for physical parameters with
each subsequent frame. To mitigate convergence issues in parameter spaces with larger degrees of
freedom, we found it helpful to warm start the optimizer after initial collision events, followed by
an optimization over the entire sequence.

4 IMPLEMENTATION DETAILS

The architecture of voxel discretization of NeRF follows Sun et al. (2022), which stores density
value and color feature within 1603 voxels, only contraining an extra 2-layer MLP with a hidden
dimension 128 for view-dependent color fields. The dimension of color feature on each voxel is
12. Positional embedding is applied to the inputs (query position, view direction and color feature)
to the shallow MLP, leading to a input dimension 39. Our differentiable MPM is using DiffTaichi
(Hu et al., 2020). Both the rendering and simulation are optimized for GPU. The entire training
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Figure 3: The photorealistic dataset used to evaluate system identification and geometry estimation. The
dataset includes a variety of continuum materials, including Newtonian fluids (Droplet, Letter), non-Newtonian
fluids (Cream, Toothpaste), granular media (Trophy), deformable solids (Torus, Bird), and plasticine (Cat,
Playdoh). All objects freely fall under the influence of gravity, undergoing collisions. Objects are rendered
under complex environmental lighting conditions for photorealism.

takes ∼ 1.5 hours on a single Nvidia 3090 GPU. Simulation+rendering of one frame takes ∼ 1s (vs.
∼ 10min for Chen et al. (2022)).

5 EXPERIMENTS

We conduct various experiments to study the efficacy of PAC-NeRF on system identification tasks
and find that:

• PAC-NeRF can recover high-quality object geometries solely from videos.
• PAC-NeRF performs significantly better on system identification tasks compared to fully learned

approaches.
• PAC-NeRF alleviates the assumptions that other techniques require (i.e., known object geometry),

while outperforming them.
• Purely pixel-based loss functions provide rich gradients that enable physical parameter estimation.

5.1 EXPERIMENT SETUP

Dataset: To evaluate different system identification methods, we simulate and render a wide range
of objects using a photo-realstic simulation engine with varying environment lighting conditions and
ground textures. Our dataset includes deformable objects, plastics, granular media, Newtonian and
non-Newtonian fluids. Figure 3 demonstrates a few example scenarios. In each scene, objects freely
fall under the influence of gravity, undergoing (self and external) collisions. For convenience, we
assume that the collision objects such as the ground plane are known (however, this can also be easily
estimated from observed images). Each scene is captured from 11 uniformly sampled viewpoints,
with the cameras evenly spaced on the upper hemisphere containing the object. All ground truth
simulation data are generated by MLS-MPM framework (Hu et al., 2018b).

Physical Parameters: Our differentiable MPM implementation supports five kinds of common
materials, including elasticity, plasticine, granular media (e.g., sand), Newtonian fluids and non-
Newtonian fluids.

• Elasticity: Young’s modulus (E) (material stiffness), Poisson’s ration (ν) (ability to preserve
volume under deformation).

• Plasticine: Young’s modulus (E), Poisson’s ration (ν), and yield stress (τY ) (stress required to
cause permanent deformation/yielding).

• Newtonian fluid: fluid viscosity (µ) (opposition to velocity change), bulk modulus (κ) (ability to
preserve volume).

6



Published as a conference paper at ICLR 2023

G
ro

u
n
d
 T

ru
th

P
A

C
-N

eR
F

P
ar

ti
cl

e 
V

ie
w

ElasticityNewtonian Non-Newtonian Plasticine Sand

Droplet Letter Cream Toothpaste Torus Bird Playdoh Cat Trophy

Figure 4: Qualitative results: Our experiments cover a wide range of continuums, from Newtonian fluids
and non-Newtonian fluids, to elastic/plastic solids and granular media (sand). Existing approaches (including
dynamic NeRF and variants) are unable to reconstruct these highly dynamic objects. PAC-NeRF not only
reconstructs them with high accuracy but also precisely determines the underlying physical properties.

Initial Guess Optimized Ground Truth

Droplet µ = 1, κ = 103 µ = 2.09× 102, κ = 1.08× 105 µ = 200, κ = 105

Letter µ = 1, κ = 106 µ = 83.85, κ = 1.35× 105 µ = 100, κ = 105

Cream µ = 102, κ = 104 , τY = 10, η = 1 µ = 1.21× 105, κ = 1.57× 106 , τY = 3.16× 103, η = 5.6 µ = 104, κ = 106 , τY = 3× 103, η = 10
Toothpaste µ = 102, κ = 104 , τY = 10, η = 1 µ = 6.51× 103, κ = 2.22× 105 , τY = 228, η = 9.77 µ = 5× 103, κ = 105 , τY = 200, η = 10
Torus E = 105, ν = 0.1 E = 1.04× 106, ν = 0.322 E = 106, ν = 0.3
Bird E = 103, ν = 0.1 E = 2.78× 105, ν = 0.273 E = 3× 105, ν = 0.3
Playdoh E = 105, ν = 0.4, τY = 103 E = 3.84× 106, ν = 0.272, τY = 1.69× 104 E = 2× 106, ν = 0.3, τY = 1.54× 104

Cat E = 103, ν = 0.2, τY = 102 E = 1.61× 105, ν = 0.293, τY = 3.57× 103 E = 106, ν = 0.3, τY = 3.85× 103

Trophy θ0fric = 10◦ θ0fric = 36.1◦ θ0fric = 40◦

Table 1: PAC-NeRF estimates physical parameters very accurately.

• Non-Newtonian fluid: shear modulus (µ), bulk modulus (κ), yield stress (τY ), and plasticity vis-
cosity (η) (decayed temporary resistance to yielding).

• Sand: friction angle (θfric) (proportionality constant determining slope of a sand pile).

System Identification Pipeline: We first train a static voxel NeRF using data from the first frame
(following Sun et al. (2022)) with the Adam optimizer. The initial velocity estimator uses L-BFGS,
which we experimentally find to be better than Adam for this sub-task. For all other physical pa-
rameters of interest, we use the Adam optimizer.

5.2 SYSTEM IDENTIFICATION EVALUATION

Synthetic Data: We report system identification results using PAC-NeRF over 9 synthetic problem
instances. The qualitative results are shown in Figure 4. And the quantitative results are listed in
Table 1. Each row lists the initial guess, the values obtained after optimization, and the ground truth.
We see that, in each case, the optimized physical parameters closely agree with the ground truth.

Real Data: We also evaluate PAC-NeRF on real-world data (Figure 5). We built a capture system
comprising four synchronized Intel RealSense D455 cameras capable of streaming RGB images at a
resolution of 640× 480 and at a rate of 60 frames per second. Note that we DO NOT use any depth
data recorded from these cameras in our experiments, for fair evaluation. We captured a deformable
ball falling onto a table and manually segmented the data. Our reconstructed scene qualitatively
matches the target videos. We note that, due to the limited number of views (here, 4) we could
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Figure 5: We test PAC-NeRF on a set of real-world multiview videos. Our reconstructed scene qualitatively
matches the target videos, which validates that the rendering loss is effectively minimized.

acquire, there are slight errors in surface geometry estimation. These issues may be mitigated by
increasing the number of views from which data is captured.

5.3 COMPARISONS

Since there are no existing approaches that estimate both geometry and material properties from
videos, we make a best-effort comparison by blending combinations of state-of-the-art approaches
for each sub-task. For each material type discussed above, we generate 10 problem instances by
varying object orientations, initial velocities, and physical parameters. The comparisons are con-
ducted on this dataset. Note that our approach (and most of the baselines herein) does not require a
separate training phase – they perform inference-time optimization on each test sequence.

5.3.1 APPROACHES EVALUATED

Multi-view LSTM: To evaluate amortized physical parameter inference schemes, we use a pre-
trained ResNet feature extractor to extract features from all views and feed them into a 2-layer
LSTM. This baseline uses privileged information in the form of training video sequences (while all
other baselines begin with a random initialization on each test sequence).

D-NeRF + DiffSim: To assess the impact of conservation law enforcement in PAC-NeRF, we com-
pare with VEO (Chen et al., 2022) (a best-effort comparison) by implementing D-NeRF (dynamic
NeRF) and integrating it with our differentiable simulator. A dynamic voxel NeRF learns both the
forward and backward deformation field for each frame. The learned forward deformation field is
then used to provide the differentiable simulator with 3D supervision.

NeRF + ∇Sim: We also compare with ∇Sim – a state-of-the-art approach for estimating physical
properties with both the geometry and rendering configuration known. (By contrast, we assume
neither.) We implement a best-effort comparison where we use a static voxel NeRF to recover the
geometry and directly provide the rendering color configuration. Note that ∇Sim only supports
FEM simulation for continuum materials. Therefore, this baseline only runs on a small subset of our
scenarios. Moreover, to run this baseline, we extract a surface mesh from our reconstructed point
cloud from voxel NeRF and then use TetWild (Hu et al., 2018a) to generate a tetrahedral mesh.
Further, we manually choose an optimal camera viewing direction to facilitate optimization.

Random: We also evaluate the performance of these approaches against random chance, by em-
ploying a baseline that predicts a uniformly randomly chosen value over the parameter ranges used.

Oracle: We implement an oracle that uses privileged 3D geometric information. The oracle knows
the ground truth point clouds, and employs 3D supervision (Chamfer distance) to infer physical
properties. Of the 10 problem instances for each material type, we run the oracle on 4.

5.3.2 ANALYSIS OF RESULTS

The performances of all approaches on the system identification tasks are listed in Table 2. For each
material, we report the mean absolute error and its standard deviation over the evaluated instances.
We see that compared to all other methods, PAC-NeRF achieves the best results in 14 of the 17
categories of physical properties estimated.

The multi-view LSTM method is adapted from DensePhysNet (Xu et al., 2019) and learns the map-
ping from videos to physical parameters implicitly. Notably, this baseline requires privileged infor-
mation in the form of training sequences – not available to the other approaches.

The D-NeRF+Diffsim is adapted from VEO (Chen et al., 2022), where the forward deformation field
is used to optimize a differentiable simulation. The accuracy of this approach therefore relies on the
quality of the learned forward deformation field. However, this learned deformation field (Tretschk
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Ours Multi-view LSTM D-NeRF
+ DiffSim

NeRF
+ ∇Sim Random Oracle (×10−2)

Newtonian
log10(µ)
log10(κ)

v

11.6 ± 6.60
16.7 ± 5.37
0.86 ± 1.45

14.1± 9.26
28.2± 19.8
23.1± 17.8

> 291.3
> 85.2
25.5

Not supported
64.1± 31.3
72.8± 42.5
55.5± 22.6

19.4± 6.95
258.9± 25.2
2.82± 1.72

Non-
Newtonian

log10(µ)
log10(κ)
log10(τY )
log10(η)

v

24.1 ± 21.9
44.0± 26.3
5.09 ± 7.41
28.7 ± 23.3
0.29 ± 0.13

39.4± 26.9
25.1 ± 22.6
7.19± 7.88
39.9± 21.1
24.4± 14.2

> 276.7
> 262.5
> 359.6
> 86.1
25.9

Not supported

34.2± 19.9
67.6± 49.4
30.0± 15.0
64.3± 43.7
52.2± 21.6

24.0 ± 17.1
82.90± 21.0
9.75± 11.3
90.6± 37.2
2.60± 0.39

Elasticity
log10(E)

ν
v

3.02 ± 3.72
4.35 ± 5.08
0.50 ± 0.23

17.7± 9.25
81.8± 58.4
6.10± 3.27

> 437.5
7.67
30.7

151.6± 42.6
16.4± 6.58
182.4± 74.1

96.2± 46.9
10.9± 6.37
43.6± 25.4

4.39± 4.54
3.65± 2.88
2.69± 0.97

Plasticine

log10(E)
log10(τY )

ν
v

83.8± 68.4
11.2 ± 14.5
18.9± 15.7
0.56 ± 0.17

41.1± 31.4
28.6± 17.3
5.40 ± 3.49
22.0± 14.8

23.2
> 268.9
10.36

> 384.6

Not supported

42.9± 38.0
82.7± 43.1
10.6± 6.15
47.7± 17.53

56.2± 30.7
8.13± 3.61
4.44 ± 3.61
4.06± 1.87

Sand θfric
v

4.89 ± 1.10
0.21 ± 0.08

20.1± 2.06
14.6± 6.25

64.5
40.6

Not supported 22.5± 14.7
38.7± 21.1

0.44 ± 0.42
1.17± 0.42

Table 2: System identification performance: Means and the standard derivations of absolute errors are re-
ported for each metric. We compare with five baselines, including a pure vision-based method (ResNet+LSTM
regression), D-NeRF+DIffSim (similar to VEO (Chen et al., 2022)), NeRF+∇Sim (Jatavallabhula et al., 2020),
random sampling from parameter distribution, and oracle point cloud plus Chamfer distance minimization. Our
method obtains the best results (highlighted in boldface font) in 14/17 entries, excluding the Oracle.

et al., 2021) cannot guarantee physical correctness, unlike PAC-NeRF which is constrained by the
conservation laws (Equation (3) and Equation (4)). In our experiments, we observed that this leads
to very noisy deformation, and impedes system identification performance. Due to these instabilities
of this approach, we only run this on one scenario per material type and report its performance.

The NeRF+∇Sim (Jatavallabhula et al., 2020) baseline only supports FEM simulations for elastic
materials and is sensitive to time integration step size. To stabilize the symplectic FEM and the con-
tact model used in ∇Sim, tens of thousands of substeps are required to simulate the entire sequence.
Notwithstanding the errors induced due to geometric inaccuracies and unknown rendering configu-
rations, errors accumulated from long timestepping sequences also contribute to the failure of ∇Sim
on our scenarios. PAC-NeRF, with its Eulerian-Lagrangian representation, is more robust under
larger deformations (e.g., fluids and sand) and permits larger time step sizes than a FEM simulation
with a symplectic integrator (used in ∇Sim).

The Oracle baseline assumes known 3D (point cloud) geometry and computes a Chamfer distance
error term per-timestep. We note, surprisingly, that in several scenarios, a pixel-wise color loss
outperforms this 3D supervision signal. The results show the effectiveness of the differentiable
rendering-simulation pipeline, where a 2D pixel-level supervision better optimizes the physical pa-
rameters, opposed to a 3D Chamfer distance metric.

6 CONCLUSION

We presented Physics Augmented Continuum Neural Radiance Fields (PAC-NeRF), a novel repre-
sentation for system identification without geometry priors. The continuum reformulation of dy-
namic NeRF naturally unifies physical simulation and rendering, enabling differentiable simulators
to estimate both geometry and physical properties from image space signals (such as multi-view
videos). A hybrid representation is used to discretize our PAC-NeRF implementation, which lever-
ages the high efficiency of an Eulerian voxel-based NeRF and the flexibility of MPM.

Despite its promising result, this work is not without its limitations. It assumes a set of synchro-
nized and accurately calibrated cameras to ensure that NeRF provides a good-quality reconstruction.
It also assumes scenes that are easily amenable to video matting (background removal) or with fore-
ground masks. It assumes the underlying physical phenomenon follows continuum mechanics and
cannot automatically distinguish between different materials. The extension of the MPM framework
beyond volumetric continuum materials (e.g., thin-shell objects like cloth), implicit MPM for stiff
materials, and integrating other differentiable simulators (e.g., articulated body simulators) are all
interesting avenues for future work. Interactions with rigid bodies can also enable manipulation
tasks (Huang et al., 2021) on NeRF-represented soft-bodies.
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A APPENDIX

A.1 PHYSICAL MODELS

MPM supports all kinds of constitutive models and plasticity models. In continuum physics frame-
work, the internal force is provided by Cauchy stress T, a tensor field defined by deformation gradi-
ent F. The deformation gradient is tracked on MPM particles to measure their distortion compared
to its initial state. For plasticity, the deformation gradient is constrained within an elastic region. A
return mapping Z is applied to pull deformation gradient back onto the yield surface.

Elasticity We use neo-Hookean elasticity to model elastic objects. The Cauchy stress for this
model is defined by

JT(F) = µ(FF⊤) + (λ log(J)− µ)I, (8)
where J = det(F). µ, λ are Lame parameters, related to Young’s modulus (E) and Poisson’s ratio
(ν) by

µ =
E

2(1 + λ)
, λ =

νE

(1 + ν)(1− 2ν)
. (9)

Newtonian Fluid We use J-based fluid combined with viscosity term to model Newtonian fluid.
The stress for this model is defined by

JT(F) =
1

2
µ(∇v +∇v⊤) + κ(J − 1

J6
). (10)

Plasticine To simulate plasticine, we use St.Venant-Kirchhoff (StVK) constitutive model combine
with von-Mises plastic return mapping. The stress associated with the model is defined by

JT(F) = U(2µϵ+ λTr(ϵ))U⊤, (11)

with F = UΣV being the SVD decomposition of F and ϵ = log(Σ) being the Hencky strain.

The von-Mises yielding condition is

δγ = ∥ϵ̂∥ − τY
2µ

> 0, (12)

where ϵ̂ is the normalized Hencky strain. τY is the yield stress, which is the parameter for this
model. δγ > 0 means the deformation gradient is outside the elastic region. The deformation
gradient will be projected back onto the boundary of elastic region (yield surface) by the following
return mapping:

Z(F) =

{
F δγ ≤ 0

U exp (ϵ− δγ ϵ̂
∥ϵ̂∥ )V

⊤ otherwise
. (13)

Non-Newtonian Fluid Non-Newtonian fluid also has a yield stress. We use viscoplastic model
(Yue et al., 2015) to model non-Newtonian fluid. We still use von-Mises criteria to define elastic
region. However, the existence of viscoplastic means the deformation will not be directly projected
back onto the yield surface. Define

µ̂ =
µ

d
Tr(Σ2)

s = 2µϵ̂

ŝ = ∥s∥ − δγ

1 + η
2µ̂∆t

(14)
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Z(F) =

{
F δγ ≤ 0

U exp ( ŝ
2µ ϵ̂+

1
d Tr(ϵ)1)V

⊤ otherwise
. (15)

Sand Drucker-Prager yield criteria is used to simulate granular materials (Klár et al., 2016). The
underlying constitutive model is still StVK. The yielding criteria is defined by

tr(ϵ) > 0, or δγ = ∥ϵ̂∥F + α
(dλ+ 2µ) tr(ϵ)

2µ
> 0. (16)

where α =
√

2
3

2 sin θfric

3−sin θfric
and θfric is the friction angle. We use the following return mapping in

sand simulations:

Z(F) =


UV⊤ tr(ϵ) > 0

F δγ ≤ 0, tr(ϵ) ≤ 0

U exp (ϵ− δγ ϵ̂
∥ϵ̂∥ )V

⊤ otherwise
. (17)

B COMPLEX BOUNDARY CONDITIONS

Pre-known boundary conditions are trivially to be added in MPM simulations, just like the ground.
Here we shown examples of elastic rope falling onto two rigid cylinders in Figure 6. The initial
guess, optimized values and the ground truth values of physical parameters are listed in Table 3.

Figure 6: Examples of elastic ropes falling onto cylinders. The top row is the ground truth video. PAC-NeRF
is trained on the segmented data, whose rendering outputs are visualized in the middle row. The bottom row is
the reconstructed MPM particles.

Initial Guess Optimized Ground Truth

Rope (Short) E = 103, ν = 0.4 E = 1.12× 105, ν = 0.22 E = 105, ν = 0.3
Rope (Long) E = 104, ν = 0.4 E = 1.09× 106, ν = 0.31 E = 106, ν = 0.3

Table 3: Quantitative results of elastic rope example.

C RECONSTRUCTION QUALITY COMPARISON WITH D-NERF

When evaluating the D-NeRF+Diffsim baseline, we observe that D-NeRF is sensitive to sudden,
large deformations (see Figure 7). As the simulation progresses, D-NeRF suffers from artificial
extreme deformation, resulting in the object breaking apart. This degrades the simulation to the
extent that parts of the object even partially disappear (violating physical plausibility). This artifact

PAC-NeRFD-NeRF

Figure 7: D-NeRF suffers from major artifacts as the object undergoes sudden large deformations. Notice how
the object becomes partially absent in the middle two frames.
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is due to the learned backward deformation map points to an empty area in the canonical space,
resulting in zero volume density. By contrast, our PAC-NeRF constrains forward deformations to
follow the physical conservation law and does not experience this kind of unphysical result.

D QUALITATIVE COMPARISON WITH ∇SIM ON REAL-WORLD DATA

We also tried ∇Sim on our real-world data. The qualitative comparison between PAC-NeRF and
∇Sim is shown in Figure 8. As we do in the baseline comparisons, we extract a surface mesh from
our reconstructed point cloud from voxel NeRF and then generate a tetrahedral mesh, manually
pick an optimal camera and set an approximate rendering configuration. As we discussed in our
baseline comparison, explicit FEM used in ∇Sim suffers from tiny time steps, leading to significant
numerical errors in backpropagations. Combining with errors from the geometry reconstructions
and the approximate rendering configurations, all these factors contribute to the failure of ∇Sim.

Figure 8
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