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Augmented Incremental Potential Contact for
Sticky Interactions

Yu Fang*, Minchen Li*, Yadi Cao, Xuan Li, Joshuah Wolper, Yin Yang, and Chenfanfu Jiang

Abstract—We introduce a variational formulation for simulating sticky interactions between elastoplastic solids. Our method brings a
wider range of material behaviors into the reach of the Incremental Potential Contact (IPC) solver recently developed by [1]. Extending
IPC requires several contributions. We first augment IPC with the classical Raous-Cangemi-Cocou (RCC) adhesion model. This allows
us to robustly simulate the sticky interactions between arbitrary codimensional-0, 1, and 2 geometries. To enable user-friendly practical
adoptions of our method, we further introduce a physically parametrized, easily controllable normal adhesion formulation based on the
unsigned distance, which is fully compatible with IPC’s barrier formulation. Furthermore, we propose a smoothly clamped tangential
adhesion model that naturally models intricate behaviors including debonding. Lastly, we perform benchmark studies comparing our
method with the classical models as well as real-world experimental results to demonstrate the efficacy of our method.

Index Terms—Physically Based Animation, Optimization Time Integration

✦

1 INTRODUCTION

Simulating frictional contact on solids has been a trend-
ing research direction in computer animation for many
years [2], [3], [4], yet much less attention has been paid to
adhesion, a closely-related mechanism. Adhesive objects are
ubiquitous, such as tape, candy, jello, rice, sticky toys, etc.

A state-of-the-art work for solid adhesion in computer
graphics was performed by [5]. Based on the Raous,
Cangemi, Cocou (RCC) adhesion model [6], [5] formulated
a mixed linear complementarity problem (MLCP) to cover
contact, friction, and adhesion constraints, and they solve
the problem with the Projected Gauss-Seidel (PGS) method.
LCP and PGS constraint dynamics solvers are widely used
in graphics and achieved great success, but they typically
could not guarantee interpenetration-free results. Adhesion
is an intricate effect on the interface between materials in
contact. If a method permits intersections, the boundaries
of the materials will be dislocated, and the interface will
disappear, making adhesion ill-defined and impossible to
be captured properly. For instance, our Taping Armadillo
example (Figure 1, right), which involves codimensional
geometries and large deformations, is a typical case that
challenges methods without non-penetration guarantees.

More recently, [1] proposed Incremental Potential Con-
tact (IPC), a variational, Newton-based nonlinear frictional
contact solver. Unlike previous approaches, their method
guarantees solver convergence and interpenetration-free ge-
ometric states throughout the entire simulation for arbitrar-
ily large timestep sizes and extreme deformations. Corre-
spondingly, extending the IPC formulation with adhesion
will further improve its versatility and widen its impact.

We thus augment IPC with the RCC adhesion model to
enable robust and controllable simulation of sticky materi-
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als in arbitrary codimensional geometries and deformation
with guaranteed non-interpenetration. However, directly
applying RCC can immediately introduce six additional pa-
rameters to be tuned for capturing realistic adhesion effects.
Furthermore, RCC models adhesion intensity at the contact
regions with another set of variables to be evolved through
time, which is challenging to deal with in optimization time
integrators.

To avoid treating adhesion intensity as a separate vari-
able, we further propose energetically consistent models
for the adhesion force. In particular, we keep the unsigned
distance as the primary variable and propose a physically
intuitive and user-friendly model for normal adhesion. This
provides an adhesion force-distance curve well-matching
that of the RCC model. On the other hand, correctly sim-
ulating tangential adhesion is also of great importance for
modeling realistic debonding behaviors. Unlike the normal
force, tangential adhesion is by nature non-integrable and
does not have a variational form. Inspired by IPC’s friction
model, we propose an integrable semi-implicit tangential
adhesion model that can converge to the implicit solu-
tion through iterative tangent basis updates. Analogous to
the normal component, without introducing an additional
adhesion intensity variable, our tangential adhesion force-
displacement curve well-matches that of the RCC model.

Our adhesion model can be conveniently incorporated
into an existing IPC-based contact solver, with only two ad-
ditional parameters introduced for independent control of
the normal and tangential adhesion stiffness. By analyzing
the adhesion model as linear elasticity, we reparameterize
the adhesion stiffness into the Pascal unit. This permits
us to correlate it with the Young’s modulus of the elastic
material, thereby facilitating a more intuitive configuration
of parameters. Due to the usage of the filter-line-search
scheme and smooth potentials, the resulting simulation is
guaranteed to converge without any interpenetration even
with large timestep sizes.

To summarize, our contributions include:
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Fig. 1. Spider Web and Tape. Extending the Incremental Potential Contact variational framework allows us to robustly simulate complex scenes
with mixed-dimensional geometry and deforming and contacting bodies with versatile friction and adhesive behaviors. The left simulation shows an
octocat hanging on a sticky spider web upside down, and the right simulation demonstrates the process of slowly peeling a strip of adhesive tape
off the armadillo attached to a pillar. Both are simulated with guaranteed stability and non-penetration even with large deformation and time step
sizes.

• A distance-based variational adhesive contact model
that is compatible with primal Newton Barrier time
integrators;

• An iterative stress tangential adhesion model that
reproduces realistic debonding behaviors;

• An augmented Incremental Potential Contact frame-
work for unified and controllable animation of con-
tact, friction and adhesion.

We demonstrate the efficacy of our method with various
benchmark experiments and challenging examples span-
ning rods, shells, and volumes with large deformation.

2 RELATED WORK

2.1 Adhesion Modeling

The interaction between ideal surfaces that are molecularly
smooth and undamaged is well understood in both theories
and experiments. Nonetheless, in most practical scenarios,
surfaces are rough and so exhibit complicated tribological
behaviors including adhesion, friction, and lubrication [8].
Predicting the interactions of rough materials remains an
open challenge.

There are several mature models for adhesion on ideal
surfaces. For example, the Johnson, Kendall, Roberts (JKR)
model [9], the Derjagin, Muller, Toropov (DMT) model [10],
the Lennard-Jones (LJ) model [11], etc. These models are
mainly based on single sphere contact, and only a few others
model real-world rough surfaces either as a collection of
asperities [12], or as a nominally flat surface embedded by
nonplanarity [13]. Despite these improvements, the above
models still require ultra-smooth surfaces with asperity
deviation of nanometers.

A famous model for the real-world, macroscopic
adhesion-friction interaction is the Raous, Cangemi, Cocou
(RCC) model [6]. In RCC, the adhesion intensity is char-
acterized by the bonding and debonding process, i.e., the
intensity varies not only with displacement, but also with

the time elapsed in the process, and it is strongly coupled
with the Coulomb friction force. Recently, [14] proposed an
improved bi-potential model based on RCC, and this model
was later optimized explicitly for orthotropic surfaces [15].

In computer graphics, although many works investi-
gated adhesion modeling at solid-fluid interfaces [16], [17],
[18], [19], [20], [21], [22], [23], there have been notably fewer
studies focused on capturing the sticky interactions between
deformable solids. In particular, [5] formulated a mixed
linear complementarity problem (MLCP) to incorporate the
RCC model for simulating adhesive contact. This method
was later applied by [24] to capture the adhesion between
sticky lips. Despite the difficulties in accurately predicting
adhesive interactions in real-world scenarios, these works
in computer graphics demonstrate that it is still practical to
take inspiration from classical models, e.g., RCC, to produce
realistic visual effects.

We apply the RCC model to augment the Incremen-
tal Potential Contact (IPC) framework with adhesion. By
directly approximating the constitutive behaviors between
adhesion forces and displacements, we avoid evolving the
adhesion intensity as a separate variable and obviate the
need for inequality constraints.

2.2 Barrier-based Contact
Barrier methods are important tools to handle inequality
constraints [25]. They are also one of the standard options
for handling the non-interpenetration constraints in contact
mechanics [26], [27], [28]. In physics-based animation, [29]
modeled the interactions between threads with a barrier
method to simulate cloth at yarn level; [30] designed a
contact barrier with an infinite sum of nested quadratic
potentials for reliably simulating elastica in complex contact
scenarios with explicit time integration.

Our new adhesion model is based on the Incremental Po-
tential Contact (IPC) method [1], where the non-penetration
constraints are novelly formulated using precisely calcu-
lated unsigned distances between boundary elements, and
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Fig. 2. Wax seal. Our distance-based model is robust under severe compression and large plastic deformations. Here, we press on top of a small
dollop of wax to seal the letter. The wax remains adhesive after being squashed and is printed with an ’X’ mark by the stamp. The wax is modeled
with an energetically consistent von-Mises plasticity with StVK elasticity [7] within our optimization time integrator.

a smoothly clamped barrier function is applied to enforce
these constraints. Together with a filter-line-search scheme
based on continuous collision detection (CCD), IPC guar-
antees global convergence and non-penetration for solids
with arbitrary codimensional geometries [31] and deforma-
tion. More subsequent works have shown the formulation’s
versatility towards solving problems in reduced simulation
of deformable [32] and rigid objects [33], [34], articulated
multibody dynamics [35], projective dynamics [36], simulat-
ing viscoelastic and elastoplastic solids [7], frictional contact
between embedded interfaces [37], and coupling between
different spatial discretizations [38], [39]. In addition to
physical simulations, barrier methods were also adopted in
geometry processing to guarantee injectivity. [40] employed
barrier energies to guarantee inversion-free in shape defor-
mation and mesh parameterization problems. [41] and [42]
applied barrier methods to further guarantee non-overlap
on the UV map during mesh parameterization. Based on
IPC, [43] proposed the Injective Deformation Processing
(IDP) framework to robustly solve mesh deformation prob-
lems while enforcing global injectivity.

3 BACKGROUND

3.1 Incremental Potential Contact (IPC)
In IPC [1], the dynamic simulation of elastic solids with
frictional contact is achieved by solving a nonlinear opti-
mization problem

xn+1 = argmin
x

(
1

2
∥x− x̃n∥2M + βh2

∑
i

Pi(x)

)
(1)

in each time step n for the new nodal position xn+1, fol-
lowed by updating velocity v according to the applied time
integration rule. Here M is the mass matrix; h is the time
step size; and Pi(x) are the potential energies for gravity,
elasticity, contact, and friction, etc. x̃n and β both depend
on the time integration rule. For example, with implicit
Euler, vn+1 = (xn+1 − xn)/h, x̃n = xn + hvn, β = 1.
The objective function of this optimization problem is called
the Incremental Potential [44], [45].

IPC rigorously formulated the non-interpenetration con-
straints using precisely calculated unsigned distance dk
between all non-adjacent boundary element pairs, k. These
distances are required to remain positive throughout the op-
timization in every timestep, which is achieved by applying

a barrier energy Pb(x) =
∑

k wkb(dk) with area weight wk

and energy density function

b(d) =

{
−κbd̂b(

d
d̂b

− 1)2 ln( d
d̂b
) 0 < d < d̂b

0 d ≥ d̂b
(2)

in the Incremental Potential. Here κb is the contact stiffness
and d̂b is a distance threshold below which contact forces are
exerted. Note that b(d) is at least C2-continuous everywhere
even at d = d̂b. As d → 0, we have b(d) → ∞ (Figure 7,
blue curve), providing arbitrarily large repulsion to avoid
interpenetration. Together with a filter-line-search scheme
based on continuous collision detection (CCD), IPC guar-
antees global convergence and non-interpenetration even
under conditions of substantial deformation or high-speed
impacts. When d̂b → 0, the IPC model converges to the non-
smooth contact model.

In the tangent direction, IPC also models friction with
an approximated smooth potential energy Pf (x). At contact
pair k, a mollified Coulomb friction force is defined as

tf = µλkf1(∥uk∥)
−uk

∥uk∥
, (3)

where µ is the friction coefficient, λk is the normal contact
force magnitude at contact pair k, uk = Tk(x)

T (x − xn)
is the tangent relative sliding displacement with the tangent
operator Tk(x), and f1(y) is a continuous function to mollify
the stick-slip transition (Figure 9, blue curve)

f1(y) =

{
− y2

ϵ2vh
2 + 2y

ϵvh
0 < y < ϵvh

1 y ≥ ϵvh.
(4)

Here ϵv is the velocity threshold below which static friction
force is applied. With λ and T temporally fixed as λ̂ and
T̂ during the nonlinear optimization (Equation 1), Pf (x) =∑

k µλ̂kf0(∥ûk∥) with f ′
0(y) = f1(y) and ûk = T̂T

k (x− xn)
is a well-defined potential energy whose negative gradi-
ent generates the mollified semi-implicit friction force [1].
Through an outer loop of fixed-point iterations which alter-
nates between the nonlinear optimization and the update of
λ̂ and T̂ , IPC converges to the solution with fully implicit
friction.

3.2 The Raous-Cangemi-Cocou (RCC) Adhesion Model
Here we introduce the RCC model [6] applied in [5]. In
terms of displacements, both the normal and tangential RCC
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Fig. 3. Making Sushi. We create our unique sushi machine by scripting the movement of five plates. Nori, rice, and the inner chocolate bars,
whether volumetric or condimensional, all stick together with consistently resolved adhesion behaviors.

models are quadratic energies. The intricate behaviors are
modeled along with another set of simulation degrees-of-
freedom – the adhesion intensity.

3.2.1 Normal Adhesion
The normal adhesion energy density per unit area at contact
pair k is defined as

PN,k =
CN

2
β2
kd

2
k, (5)

where CN is the constant normal adhesion stiffness, βk ∈
[0, 1] is the adhesion intensity at contact pair k, and dk is
the distance. Integrating the energy density over contact
regions, we obtain the normal adhesion potential energy
PN (x) =

∑
k wkPN,k with wk being the area weight.

3.2.2 Tangential Adhesion
Similarly, the tangential adhesion energy density at contact
pair k is defined as

PT,k =
CT

2
β2
k∥uk∥2, (6)

where CT is the constant tangential adhesion stiffness and
uk is the relative sliding displacement at contact pair k. The
tangential adhesion potential energy is defined as PT (x) =∑

k wkPT,k.

3.2.3 Adhesion Intensity
In [5], the adhesion intensity βk is fixed per timestep, and
evolved separately from the main degree-of-freedom before
each timestep via explicit Euler

βn+1
k = min(1,max(0, βn

k + hβ̇n
k )), (7)

where β̇k is the varying speed of βk depending on the
contact configurations.

Let pk be the total normal pressure at contact pair k.
When pk < 0 (adhesion is active), debonding is triggered,
and with linear approximation to the RCC model,

β̇k =
1

η
min(W − CNβkd

2
k − CTβk∥uk∥2, 0), (8)

where η is a viscosity parameter, and W is a maximum
adhesion energy. When pk > 0 (non-penetration constraint

is active), the normal motion triggers bonding, but any
tangential motion still results in debonding, thus we have

β̇k = rmax(pk−βkp0, 0)+
1

η
min(W−CTβk∥uk∥2, 0), (9)

where r is the bonding rate, and p0 is a compression value
for saturation.

Now we can see that the RCC model introduces six
parameters (CN , CT , η, W , r, p0) to the simulation. The
last four parameters that determine β̇ indirectly model the
constitutive behavior between adhesion forces and displace-
ments during bonding and debonding (see Figure 5 and
Figure 9). It is up to future research to assess if they are
effective for capturing complicated behaviors, although they
could still complicate the simulation setup for the majority
of adhesion effects.

4 METHOD

To augment IPC with the RCC adhesion model while avoid-
ing treating adhesion intensity as another set of degrees-
of-freedom, we directly model the constitutive relation be-
tween adhesion forces and displacements to approximate
results from RCC.

We start by examining the force-displacement curve of
the RCC model given by [6]. In a 2D case, with com-
plete adhesion (β = 1) and zero displacement initially, we
first analyze the normal behavior (Figure 5, right). Under
compression, the non-interpenetration constraint is strictly
enforced, while under traction, an adhesive resistance is
active, causing the adhesion force to increase with the dis-
placement. Next, the intensity of adhesion starts to decrease
when the displacement is sufficiently large such that the
adhesion energy exceeds the limit W (Equation 9). When
adhesion is totally broken, the adhesion force decreases to
0. The tangential adhesion follows a very similar pattern
(Figure 9, left). Our idea is to augment both the barrier
and friction energy by incorporating an additional term that
provides a similar adhesion force-displacement relation as
observed above.

4.1 Augmented IPC Barrier for Normal Adhesion
Let 0 < d̂b ≤ d̂p < d̂a be a sequence of distance thresholds
where the IPC barrier energy density b(d) is active on (0, d̂b)
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Fig. 4. Taping Armadillo. An elastic armadillo is attached to a pillar by two strips of adhesive tape. As we slowly peel away one of the strips, the
armadillo’s face and hands reluctantly go through debonding and exhibit intricate, sticky deformations during the process.

d

ta,k

Fig. 5. RCC v.s. Our Normal Adhesion. Our model approximates the
RCC force-displacement relation using piecewise linear functions.

to avoid interpenetration. We design our adhesion energy
density a(d) to be active on (0, d̂a), and let it reach the
steepest (corresponding to the largest adhesion force) at d̂p.
To achieve this, we define a(d) as a piecewise quadratic
function

a(d) =


a1d

2 + c1 0 < d < d̂p
a2d

2 + b2d+ c2 d̂p ≤ d < d̂a
0 d ≥ d̂a,

(10)

where a1 = a2(1 − d̂a

d̂p
), c1 = a2(d̂a − d̂p)

2 − d̂2pa1,

b2 = −2a2d̂a, c2 = a2d̂
2
a, and a2 < 0 is an adjustable

parameter relating to the maximum derivative of a, namely
2a2(d̂p − d̂a) at d = d̂p. Note that by our construction,
a′(0) = a(d̂a) = a′(d̂a) = 0, and a(d) is at least C1-
continuous everywhere (Figure 7, right, orange curve). In
this way, our adhesion-distance relation is consistent with
the RCC model that the force increases from 0 until reaches
a peak and then decreases back to 0 as distance increases.
Then, we can augment the IPC energy density function with
the adhesion term and obtain b(d) + a(d), which captures
both contact and adhesion (Figure 7, left, yellow curve). The
augmented energy first smoothly decreases from 0 to a local
minimum for adhesion as the distance gets below d̂a, and
then increases to infinity as the distance approaches 0.

By integrating the augmented IPC energy density on the
boundary of the solids , we obtain the normal-component
adhesive contact potential PN (x) =

∑
k wk(b(dk) + a(dk)).

The potential energy on each contact pair is properly

weighted with the estimated contact area, which is consis-
tent across resolutions.

4.2 Strength of Normal Adhesion

To reparameterize the adjustable parameter a2 to a material-
related quantity for more convenient experimental setup,
we analyze the pressure balance between adhesion and
elasticity at the contacting areas.

Similar to the normal force magnitude λ in IPC friction,
the normal adhesion pressure at contact pair k can be com-
puted as −∂a

∂d (dk), which measures the normal adhesion
force magnitude per unit area. Now consider a linear elastic
material with Young’s modulus Y sticking on the ground
(no gravity). If we set a2 such that

−∂a

∂d
(d̂p) = −Y εc, (11)

which implies the maximum pressure of normal adhesion is
only able to balance the stress of the material up to strain
εc, after slowly pulling the material away from the ground,
it will be fully detached once it deforms uniformly with a
strain measure εc near the sticking area. Essentially, stress
is also a pressure quantity that measures the elastic force
per unit area. Therefore, when the solid deforms more and
stress increases further, exceeding the maximum pressure
of adhesion, detachment must happen. Solving Equation 11
gives us

a2 =
Y εc

2(d̂p − d̂a)
. (12)

The detachment stress can be independent of Young’s mod-
ulus; by reusing Y from the solid material property, we can
intuitively set εc to achieve the desired adhesion behaviors.
We use the smaller Y for contacting objects with different
Young’s modulus. As for the distance thresholds, we can
practically set them relative to the IPC active distance d̂b:
d̂p = d̂b and d̂a = 2d̂b.

4.3 Tangential Adhesion

Inspired by IPC friction, we define our tangential adhesion
force at contact pair k as

ta,k = µaλa,kft(∥uk∥)
−uk

∥uk∥
, (13)
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Fig. 6. Opening Chips Bag. A bag containing 750 chips is sealed with adhesion. We show the process of pulling the bag slowly on the top until it
is opened. Here, intricate frictional contacts between the chips are also realistically captured.

where µa ≥ 0 is an adjustable tangential adhesion coeffi-
cient similar to the friction coefficient, λa,k is the maximum
possible value of normal adhesion force magnitude at con-
tact pair k, and ft(y) is a continuously clamped quadratic
function:

ft(y) =

{
− y2

ϵ2ah
2 + 2y

ϵah
0 < y < 2ϵvh

0 y ≥ 2ϵvh.
(14)

Here we directly reused the quadratic form in the IPC
friction model (Equation 3) to ensure that ft is always
nonnegative. The tangential adhesion force first reaches its
maximum value 1 at y = ϵah and then decreases to 0 as
tangential displacement increases. Together with λa,k, the
maximum tangential adhesion force is the same as it is in the
normal direction when µa = 1, which also poses µa as an
intuitively adjustable ratio for realizing different adhesive
behaviors. As for ϵa, we can set it to the same value of ϵv .

The tangential adhesion model damps sliding while
still permitting. Combining both the IPC friction and our
tangential adhesion model then provides a tangential force-
displacement relation consistent with the RCC model (see
Figure 9). Now that λa,k is constant per contact pair, with the
tangent operator Tk for computing uk temporally unvaried
during the nonlinear optimization (Equation 1), we can
similarly integrate the tangential adhesion forces to obtain
an augmented potential energy Pt(x) =

∑
k(µλ̂kf0(∥ûk∥)+

µaλa,kft0(∥ûk∥)) with f ′
t0(y) = ft(y) (note that the area

weighting is inside λ). By performing fixed-point itera-
tions that alternate between the nonlinear optimization and

0 1 2 3
-2

0

2

4

0 1 2 3
-6

-4

-2

0

2

Fig. 7. Normal Adhesion. Plots of energy density and its derivative of
our normal direction adhesive contact model. Here, we choose d̂b = 1,
d̂p = 1.5, and d̂a = 2 for clear illustration.

tangent variable updates, the solution with fully implicit
tangential forces can be achieved.

5 EVALUATION

We follow [46] to apply the projected Newton (PN) method
with the filter-line-search scheme for solving the time-
stepping optimization (Equation 1). In each PN iteration,
Hessian matrices of the barrier, friction, adhesion, and
elasticity potentials are first computed and projected to a
close-by symmetric positive-definite (SPD) form per local
stencil by clamping its negative eigenvalues to 0. Then, a
search direction is computed by solving a linear system
constructed with the gradient and the projected Hessian
of the Incremental Potential. Next, we apply the additive
continuous collision detection (ACCD) method from [31] to
compute a large feasible step size to start the backtracking
line search, which together ensures non-interpenetration
and global convergence.

We implemented our system based on the Eigen linear
algebra library [47], and parallelized our computations with
Intel TBB. Our sparse linear systems are solved in parallel
as well, with CHOLMOD [48] compiled using MKL BLAS
and LAPACK for high efficiency. Note that we follow IPC
to directly use squared distances as the input variables
for both the barrier function b(·) and the normal adhesion
energy density a(·) to avoid possible numerical instabilities
introduced by taking the square root. This changes the
expression of p, λ, and a2 as extra chain rules will need
to be applied.

In the remainder of this section, we start with an ablation
study comparing directly applying RCC to IPC and our
method (Section 5.1), followed by comparison to LCP-based
method (Section 5.2). Then several examples are exhibited to
validate our capability on capturing complex and realistic
behaviors (Section 5.3 – 5.5). Finally, we demonstrate the
versatility of our method by showing an additional set of
complex examples with detailed analysis of the timing per-
formance (Section 5.6). All of our experiments are running
on a desktop with a 12-core Intel i9-10920X CPU at 3.50
GHz. The statistics are listed in Table 1. Following IPC, we,
in practice, directly solve for the solution with semi-implicit
tangential adhesive contact forces without performing more
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Fig. 8. Cleaning Gel. Our adhesion model is applicable to materials with various stiffnesses, including this extremely soft jello which can clean up
tiny objects from small gaps. By setting the critical strain, εc, all the way from 0 (no adhesion) to 0.5, we can simulate the gel with different adhesion
strength in a controllable way.
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Fig. 9. Tangential Adhesion. Left: plot of the RCC tangential adhesion
force w.r.t. tangential displacement [6]. Right: the force-displacement
curve of our tangent direction adhesive contact model. Here we choose
ϵv = 1 and ϵa = 2 for clear illustration.

fixed-point-iterations. This can already provide visually
high-quality results. Please see [46] for further details.

5.1 Ablation Studies

Our experiments begin with ablation studies to demonstrate
that, with only two user parameters (εc and µa) exposed,
our adhesion model can effectively capture various adhesive
effects. We further demonstrate that the distance thresholds
do not have a significant impact on physical behaviors.

5.1.1 Adhesion Model

Here, we compare against the direct application of RCC in
IPC to our variational model that captures the constitutive
relation solely based on displacements. For simplicity, we
will refer to them as RCC and our method.

We run an example using both methods to achieve
similar adhesive behaviors and then compare the timing
performance and the experience of parameter setting. In
this example, we throw a bunch of sticky toys onto a fridge
door. We want to capture versatile behaviors such that some
of the toys stick on the fridge, while others fall down
onto the ground. The results show that, with our target
adhesive behaviors similarly achieved by the two methods
(Figure 10), their timing performance is comparable (0.92
v.s. 0.88 min/step), while our method makes scene setup
much more convenient by exposing only two parameters.

h=0.01s, RCC h=0.001s, RCC

h=0.001s, oursh=0.01s, ours

Fig. 10. Sticky Toys. Under gravity, friction, adhesion and elasticity, a
total of 20 complex sticky toys are thrown onto a fridge door and bounce
around. Here, when achieving similar adhesive behaviors, our method
(bottom) has similar timing performance but fewer parameters to tune
compared to RCC (top). With less numerical damping under smaller
time step sizes (right), there are slightly fewer toys sticking to the fridge.

Finding a suitable set of RCC parameters that are stable
and devoid of artifacts has been a laborious process; we
even observed some nonphysical behaviors in the results if
the six parameters are not all properly set. This issue might
be exacerbated by simulating with large time step sizes
(h = 0.01s), which makes the time-split adhesion intensity
evolution prone to temporal discretization errors.

To provide further insights, we conducted additional ex-
periments utilizing the identical simulation settings except
with varying time step sizes h = 0.01s (Figure 10 left) and
h = 0.001s (Figure 10 right). We observe that the overall
animation is more dynamic with smaller time step sizes,
resulting in slightly fewer toys sticking to the fridge. In
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Fig. 11. Making Meatballs. Here, we selectively model adhesion only between the meatballs and the sticky rice grains to cook a traditional Chinese
dish. As we shake the container after dropping the meatball and rice (left 6 images), the rice uniformly covers the meatball as shown on the right.

TABLE 1
Simulation Statistics. All experiments were performed on a 12-core Intel i9-10920X CPU. Scenes with a more frequently varied and/or larger set
of active contact pairs tend to take more Newton iterations and, accordingly, have longer simulation times. *Here the Young’s modulus Y are used

for calculating the adhesion stiffness a2. In the first four scenes, the values are from the sticky rice, spider, and Armadillo respectively.

Example min/step contacts/step iter/step h (s) # nodes Y (Pa)* εc µa

(Fig. 3) Sushi 1.07 60.5K 55.7 0.04 31K 4e5 0.05 1.0

(Fig. 11) Meatball 1.40 35.7K 32.6 0.04 53K 4e5 0.05 1.0

(Fig. 1) Spider Web 2.45 1.5K 58.1 0.01 4K 1e4 3.4 0.15

(Fig. 4) Tape 1.44 93.3K 24.2 0.02 46K 1e3 0.5 1.0

(Fig. 10) Sticky Toys 0.92 1.3K 42.6 0.01 23K 1e5 0.7 0.0

(Fig. 2) Wax 2.69 38.7K 54.8 0.01 22K 1e4 0.08 1.0

(Fig. 8) Cleaning Gel 0.15 7.0K 20.8 0.01 13K 4e3 0.5 1.0

(Fig. 6) Chips Bag 0.78 121.9K 22.8 0.01 31K 1e5 0.002 1.0

contrast, larger time step sizes generate more numerical
damping and result in more toys sticking to the fridge
for both RCC and our model. Notably, the results were
consistent across both methods, and our adhesion model
demonstrated similar effects to RCC. In the rest of this
subsection, we will concentrate on the evaluation of our
variational model.

5.1.2 Distance Threshold

The IPC model includes a barrier activation threshold d̂b,
while our adhesion model introduces two additional param-
eters, d̂p and d̂a, for adhesion activation. These parameters
are crucial for achieving fast convergence. When assigned
values extremely close to each other or too near to 0,
they may result in floating point errors and also make the
problem unnecessarily ill-conditioned.

To investigate the effects of these distance thresholds on
the physical behaviors, we first maintain the relative magni-
tudes between these thresholds by setting d̂b = d̂p = 0.5d̂a
and scale them down by 0.1× and 0.01× to test the cleaning
gel simulation with d̂a = 10−3, 10−4, 10−5 (Figure 12 left
three). Next, we keep d̂b = 0.25d̂a and d̂a unchanged and
introduce a scaling factor sp for d̂p = spd̂a. We test sp for
three values: 0.25, 0.5, 0.75 (Figure 12 right three). For all

these six sets of parameters, the results consistently exhibit
similar adhesive effects when evaluating the quantity of
dust pieces sticking to the gel.

The outcome of these experiments suggests that altering
distance thresholds do not have a significant impact on the
adhesive behaviors. Therefore, we fix d̂b = d̂p = 0.5d̂a as the
default option in practice and allow their absolute values to
comply with d̂b, the IPC parameter, to accommodate varying
mesh resolutions and dimensions.

5.2 Comparison to LCP-based Method
Gascon et al. [5] applied a constraint-based method to
simulate adhesive contact. They followed [49] to define
the contact constraints and elastodynamics and formulated
linear complementarity problems (LCP) where contact, fric-
tion, and adhesion are treated as distinct constraint types.
In comparison, we use conservative forces to approximate
these behaviors, thereby transforming the implicit time in-
tegration into unconstrained optimizations.

To compare our method with Gascon et al. [5], we im-
plemented an LCP solver in our simulation framework and
applied it to handle the constraints of contact, friction, and
adhesion. We set up a scene by fixing an adhesive square
cloth (Figure 13) at its top, twisting it by rotating its bottom
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̂db = 5.0 × 10−6
̂dp = 5.0 × 10−6
̂da = 1.0 × 10−5

̂db = 5.0 × 10−5
̂dp = 5.0 × 10−5
̂da = 1.0 × 10−4

̂db = 5.0 × 10−4
̂dp = 5.0 × 10−4
̂da = 1.0 × 10−3

̂db = 2.5 × 10−4
̂dp = 2.5 × 10−4
̂da = 1.0 × 10−3

̂db = 2.5 × 10−4
̂dp = 5.0 × 10−4
̂da = 1.0 × 10−3

̂db = 2.5 × 10−4
̂dp = 7.5 × 10−4
̂da = 1.0 × 10−3

Fig. 12. Comparisions with Different Distance Thresholds. We simulate the cleaning gel example (Figure 8) with varying d̂a (left three, fixing
d̂b = d̂p = 0.5d̂a) and varying d̂p (right three, fixing d̂b = 0.25d̂a and d̂a). As similar adhesive effects are achieved, we conclude that d̂p and d̂a
exert little influence on the physical behaviors when set in a reasonable range.

(initial)

(initial)

h=0.01 (Intermediate) h=0.01 (final) h=0.001 (intermediate) h=0.001 (final)

h=0.001 (final)h=0.001 (intermediate)h=0.01 (final)h=0.01 (intermediate)

LCP

Ours

Intersection

Fig. 13. Comparison to Gascon et al. We roll an adhesive thin sheet and subsequently unroll. The upper row, highlighted in yellow, illustrates
the initial, intermediate, and final states when employing constraint-based methods with two distinct time step sizes h = 0.01s and h = 0.001s.
The lower row in orange displays the results of our approach under the same settings. When simulation gets challenging at large time step sizes,
constraint-based methods are prone to interpenetration issues.

side in two rounds, and then rotating it backwards to its
original configuration. Around the center area, the fabric
will stick together and be pulled away later. Eventually,
some portions of the cloth remain adhered. We simulate this
scene with two time step sizes, h = 0.01s and h = 0.001s,
for both the LCP method and our approach. In general,
a larger time step size results in vertices traveling longer
distances, causing adhesive contact states to change more
rapidly and become increasingly challenging. For smaller
time step sizes, the animation sequences for both methods
are similar. However, with larger time step sizes, penetration
artifact occurs in the constraint-based method, causing the
twisting knot to deviate from the central location and lead-
ing to a different final pose. As pointed out in [1] and [5], this
issue is not unusual in constraint-based contact approaches
regardless of the adhesion models being used. It arises from
the absence of theoretical convergence guarantees for LCP
and errors in its constraint linearization.

5.3 Adhesion v.s. Friction
Here, we design a simple example to study the intricate be-
haviors of mixed tangential adhesion and frictional effects.
We place a 1m-wide cube on a wall with an initial distance
where the net force in the normal direction between them
is 0 (Figure 14 top left). Gravity is set to −9.81m/s2 in the
vertical direction.

Adhesion Increases

Fr
ic

tio
n 

In
cr

ea
se

s

Initial

Fig. 14. Tangential Adhesion v.s. Friction. We simulate a cube sliding
on or detaching from a wall with different tangential adhesion and friction
coefficients. The behaviors intricately vary between different setups.

Without adhesion, no matter how large the friction coef-
ficient is, the cube will slide down along the wall as if in free
fall, as there are neither normal nor tangential contact forces
(Figure 14 left). However, with large adhesion, no matter
what the friction coefficient is, the cube will stick to the wall
(Figure 14 right).

With small adhesion, the behavior becomes interesting.
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Pulling Test Peeling Test

Fig. 15. Comparison between two debonding processes. We apply
uniformly (bottom left) and linearly (bottom right) distributed loads to
separate two adhesive plates initially stacked together with a gap of
0.25d̂p. Plotting the total adhesion force w.r.t time (top), we clearly
observe the bonding/debonding process is consistent with that of RCC
(Figure 5).

If the friction coefficient is 0, the tangential adhesion force
at the interface and the gravity force on the whole cube to-
gether form a torque, causing the cube to start to bend. Since
adhesion is not sufficiently large, gravity quickly debonds
the adhesion in the tangential direction and instigates the
cube’s downward slide accompanied by vertical vibrations.
The cube remains attached to the wall due to normal adhe-
sion (Figure 14 middle top). If the friction coefficient is large,
similarly, under the combined effect of tangential adhesion
and gravity, the cube will start to bend. However, as the
cube bends, its left-bottom part is pushed inward, resulting
in a normal contact force and thus large friction forces .
Adhesion, however, remains insufficient, allowing gravity
to debond it quickly. Ultimately, the right-top pointing fric-
tional contact forces exerted at the left-bottom of the cube
act like a support, causing the normal adhesion to debond
first, making the cube rotate and finally detach from the wall
(Figure 14 middle bottom).

5.4 Debonding

We perform two canonical tests, the parallel pulling and the
peeling of two adhesive plates (Figure 15), inspired by [50],
to validate that our simplified model can still capture the
bonding/debonding process described by the RCC model.

In the parallel pulling experiment (Figure 15, bottom
left), two plates are initially stacked with a gap of 0.25d̂p.
Since their distance is within the active region (0, d̂a) of
adhesion, bonding immediately occurs. We load the lower
plate with uniformly distributed downward pulling forces
whose magnitudes linearly increase with time until the
plates detach. From the plot of total adhesion force w.r.t.

Real-World

Simulation

Upper-le! Peeling Upper-right Peeling

Fig. 16. Peeling Tapes off a Desk. With our adhesion model, our
simulation well-matches video capture of real-world experiments on
peeling tapes off a desk towards different directions.

time (Figure 15, top), we can see that the adhesion force first
increases as distance increases until it reaches a peak, which
corresponds to d = d̂p. Then, as the load keeps increasing,
the gap also increases, and debonding happens with the
adhesion force dropping all the way down to 0.

In the peeling experiment (Figure 15, bottom right), with
the same initial geometric setting, we instead distribute the
load linearly in the x-direction w.r.t the distance to the plate
center. This different force distribution triggers a progressive
debonding process starting from the left and right ends
of the plate all the way to the center, which is clearly
visualized by the stress profile. This progressive debonding
behavior also results in a lower peak of the total adhesion
force (Figure 15, top) comparing to the pulling test, where
debonding occurs simultaneously.

5.5 Real-World Experiments

To further validate our method with real-world experi-
ments, we stick a strip of adhesive tape on a desk surface,
and peel the tape from its right end towards different
directions.

When peeling towards the upper-left direction (Fig-
ure 16, left), the tape progressively detaches the desk from
right to left, where the detached tape is straight under
mild tension and it forms a right angle with the unpeeled
part. When peeling towards the upper-right direction (Fig-
ure 16, right), the detachment happens rapidly throughout
the whole strip under large tension right after the right
end travels just a short distance. After the left end of the
tape is finally detached, the tape quickly rolls due to inertia
effects. From the side-by-side comparison, we observe that
our simulation (Figure 16, bottom) well-matches the video
footage of our real-world experiment (Figure 16, top).

5.6 Performance

To evaluate the performance of our method, we simulate
more examples with sticky interactions that are commonly
seen in our daily life, including rolling sushi (Figure 3),
making sticky rice balls (Figure 11), taping the Armadillo
(Figure 4), opening chips bag (Figure 6), sealing wax on an
envelope (Figure 2), cleaning keyboard (Figure 8), and spi-
der webs (Figure 1). With straightforward parameter setting,
our method robustly simulated all these scenes without any
interpenetrations, capturing intricate adhesive behaviors.
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Gradient Hessian Linear Solve Line Search Continuous Collision Detection
Sushi 0.01005523535 0.2687366705 0.3562469943 0.2667819928 0.09817910702
Meatball 0.008494652346 0.194075569 0.2480639929 0.4165453704 0.1328204153
Spider Web 0.005537090087 0.2231899098 0.6672843679 0.06919166918 0.03479696299
Tape 0.01140410735 0.317538599 0.4097739777 0.2033201226 0.05796319331
Sticky Toys 0.004662092425 0.2420412027 0.2075462721 0.4067121563 0.1390382765
Wax 0.006419433941 0.1862181823 0.4778399703 0.2591718329 0.07035058059
Cleaning Gel 0.007085903256 0.2360439486 0.3676351134 0.2883530322 0.1008820025
Chips Bag 0.01717761466 0.3698839 0.2453697498 0.2970873739 0.07048136174

Fig. 17. Timing Breakdown. Here, the Hessian timing includes both the
computation and the SPD projection; the line search timing is dominated
by finding all active contact pairs. Hessian-related computations (red
and yellow) and spatial searches (green and orange) are the two main
bottlenecks of our method.

5.6.1 Timing Breakdown
In Figure 17, we demonstrate the timing breakdowns of
all examples. Here, the proportion of time spent on each
of the main components is plotted. Note that computing
the Hessian matrix with SPD projections and then solving
the linear system by direct factorization take most of the
time for nearly all examples. The remaining bottlenecks
comprise CCD and line search wherein the barrier energy is
evaluated in each backtracking. Improving Hessian-related
computations is non-trivial. Although matrix-free Krylov
solvers can be an attractive candidate, without effective pre-
conditioners, they may require a large number of iterations
to solve our stiff barrier systems, which won’t significantly
improve the efficiency. Fortunately, GPU acceleration on
spatial searches is a well-explored direction, and there are
promising candidates that can be applied in our method.
We leave investigating performance accelerations on our
method as a meaningful future work.

5.6.2 Newton Solver Configuration
Based on our unconstrained formulation of the adhesive
contact simulation, we can directly use the Newton solver,
therefore benefiting from a second-order convergence rate.
We set the convergence criterion as the infinite norm of the
search direction divided by time step size h going below a
certain threshold (e.g., 0.01 for most examples). Addition-
ally, we demonstrate that within a reasonable range, dif-
ferent distance thresholds do not substantially affect solver
convergence (Figure 18).
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r̂dp = 2.5 × 10−4 ̂da = 10−3

̂dp = 7.5 × 10−4 ̂da = 10−3

̂dp = 5.0 × 10−4 ̂da = 10−3 ̂dp = 5.0 × 10−6 ̂da = 10−5

̂dp = 5.0 × 10−5 ̂da = 10−4

̂dp = 5.0 × 10−4 ̂da = 10−3

Fig. 18. Newton Iteration Count per Frame. Here we show the Newton
iteration count per frame of the cleaning gel simulation in Figure 12 with
different distance thresholds.

5.6.3 Different Adhesion Strength
Here we analyze the impact of adhesion strength on simu-
lation performance by simulating the cleaning gel example
with different critical strain εc (Figure 8). With larger ad-
hesion, more dust objects are removed from the keyboard
and stick to the gel, generating more contacts and making
the Incremental Potential more challenging to minimize
as it becomes less convex and smooth. As a result, the
required PN iterations to converge under the same crite-
ria increase (Figure 19, right). However, the timing is not
strictly increasing with the adhesion strength (Figure 19,
left). In the εc = 0.1 case, we observed that the spatial
hash data structure used in IPC was providing suboptimal
performance as the dust objects occasionally fall out of the
keyboard, increasing the bounding box of the scene together
with the hash cell size, which is a sensitive attribute for
achieving the best performance. We leave utilizing more
adaptive data structures like the Bounding Box Hierarchy
(BVH) for improving the spatial search for future work.

10 200 27.043588
14 392 69.935899
20 800 134.082295
28 1568 278.874707 1800
40 3200 617.473738

Num Bodies Total Time Timing Iteration Contact #

20 0 18.183806 6.743216936 13.67727273 8317.365219
40 0.1 217.154083 11.83929768 17.73636364 8639.293381
60 0.25 470.246256 8.051049123 18.37272727 8488.782519
80 0.5 912.490091 13.85913176 20.37272727 8109.562963

Num Bodies Total Time Time per Step (s)
10 200 3.917263 0.03561148182
20 800 18.183806 0.1653073273
40 3200 217.154083 1.974128027
60 7200 470.246256 4.274965964
80 12800 912.490091 8.295364464

100 20000 1526.014514 13.87285922
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Fig. 19. Performance under Different Adhesion Strength. Here we
demonstrate the timing and iterations per time step for the cleaning gel
example with different adhesion strengths (Figure 8).

6 CONCLUSION AND FUTURE WORK

We presented a distance-based variational adhesive fric-
tional contact model for the animation of sticky elasto-
plastic solids. Our model can be conveniently deployed in
the Incremental Potential Contact (IPC) simulator, allowing
intricate adhesion effects coupled with large deformation
to be robustly simulated with non-penetration guarantees,
bringing important dynamical details to computer graphics
in a reliable way. By directly modeling the constitutive
relation between adhesion forces and displacements, our
model enables controllable simulation of versatile adhesive
behaviors with only two physical parameters.

In this study, we employ the combination of RCC and
IPC as a starting point, but we advocate for our approach,
which is more practical and stable. Thus, our variational
model is produced, which enables simulations of adhesion
with large timestep sizes. It only approximates RCC and is
hence less physically precise and expressive, yet we greatly
favor its two key benefits: (1) Only 2 intuitive parameters
are needed. (2) Incorporating the adhesion intensity into
the potential energy permits efficient simulation at large
timestep sizes without artifacts, and this is true even with
careless parameter selections. Note that when RCC utilizes
inadequately selected parameters, the simulation may still
remain stable due to the heuristic clamping of βk. This
conceals the existence of exploded numerical solutions to
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the ODE for βk and can lead to artifacts. The further inves-
tigation of such behaviors and the development of a more
stable and user-friendly technique for simulating the full
spectrum RCC model within or outside the IPC framework
is left to future research.

Similar to IPC friction, although our method guarantees
convergence to the solution with semi-implicit tangential
forces, the fixed-point iterations in the outer loop can only
converge when the initial point is sufficiently close to the
fully-implicit solution. It will be theoretically valuable to
further analyze the convergence property of this iterative
strategy. In addition, although our model can resolve com-
plex and intricate adhesive behaviors in various animation
examples, the simplifications may restrict the expressiveness
of the original RCC model. There is also plenty of room for
improvement in the timing performance of our method. We
can explore GPU accelerations on the spatial search, and
also more efficient and scalable (non-)linear solvers suitable
for stiff barrier systems. Extending our model for adhesive
solid-fluid interactions based on IPC will be another impact-
ful direction.
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mulation and comparison of algorithms for frictional contact prob-
lems,” International Journal for Numerical Methods in Engineering,
vol. 42, no. 1, pp. 145–173, 1998.

[27] T. Belytschko, W. Liu, and B. Moran, Nonlinear Finite Elements for
Continua and Structures. John Wiley & Sons, Ltd, 2000.

[28] G. Kloosterman, R. M. van Damme, A. H. van den Boogaard, and
J. Huetink, “A geometrical-based contact algorithm using a barrier
method,” International Journal for Numerical Methods in Engineering,
vol. 51, no. 7, pp. 865–882, 2001.

[29] J. M. Kaldor, D. L. James, and S. Marschner, “Simulating knitted
cloth at the yarn level,” in ACM SIGGRAPH 2008 papers, 2008, pp.
1–9.

[30] D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun,
“Asynchronous contact mechanics,” in ACM SIGGRAPH 2009
papers, 2009, pp. 1–12.

[31] M. Li, D. M. Kaufman, and C. Jiang, “Codimensional incremental
potential contact,” ACM Trans. Graph. (SIGGRAPH), vol. 40, no. 4,
2021.

[32] L. Lan, Y. Yang, D. Kaufman, J. Yao, M. Li, and C. Jiang, “Medial
ipc: accelerated incremental potential contact with medial elas-
tics,” ACM Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1–16,
2021.

[33] Z. Ferguson, M. Li, T. Schneider, F. Gil-Ureta, T. Langlois, C. Jiang,
D. Zorin, D. M. Kaufman, and D. Panozzo, “Intersection-free
rigid body dynamics,” ACM Transactions on Graphics (SIGGRAPH),
vol. 40, no. 4, 2021.

[34] L. Lan, D. M. Kaufman, M. Li, C. Jiang, and Y. Yang, “Affine
body dynamics: Fast, stable & intersection-free simulation of stiff
materials,” ACM Trans. Graph. (SIGGRAPH), vol. 41, no. 4, 2022.

[35] Y. Chen, M. Li, L. Lan, H. Su, Y. Yang, and C. Jiang, “A unified
newton barrier method for multibody dynamics,” ACM Trans.
Graph. (SIGGRAPH), vol. 41, no. 4, 2022.

[36] L. Lan, G. Ma, Y. Yang, C. Zheng, M. Li, and C. Jiang, “Penetration-
free projective dynamics on the gpu,” ACM Trans. Graph. (SIG-
GRAPH), vol. 41, no. 4, 2022.

[37] Y. Zhao, J. Choo, Y. Jiang, M. Li, C. Jiang, and K. Soga, “A barrier
method for frictional contact on embedded interfaces,” Computer
Methods in Applied Mechanics and Engineering, vol. 393, p. 114820,
2022.

[38] X. Li, Y. Fang, M. Li, and C. Jiang, “Bfemp: Interpenetration-free
mpm–fem coupling with barrier contact,” Computer Methods in
Applied Mechanics and Engineering, p. 114350, 2021.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

[39] Y. Jiang, Y. Zhao, C. E. Choi, and J. Choo, “Hybrid continuum-
discrete simulation of granular impact dynamics,” arXiv preprint
arXiv:2108.02080, 2021.

[40] C. Schüller, L. Kavan, D. Panozzo, and O. Sorkine-Hornung,
“Locally injective mappings,” in Computer Graphics Forum, vol. 32,
no. 5. Wiley Online Library, 2013, pp. 125–135.

[41] J. Smith and S. Schaefer, “Bijective parameterization with free
boundaries,” ACM Transactions on Graphics (TOG), vol. 34, no. 4,
pp. 1–9, 2015.

[42] Z. Jiang, S. Schaefer, and D. Panozzo, “Simplicial complex aug-
mentation framework for bijective maps,” ACM Transactions on
Graphics, vol. 36, no. 6, 2017.

[43] Y. Fang, M. Li, C. Jiang, and D. M. Kaufman, “Guaranteed globally
injective 3d deformation processing,” ACM Trans. Graph.(TOG),
vol. 40, no. 4, 2021.

[44] M. Ortiz and L. Stainier, “The variational formulation of viscoplas-
tic constitutive updates,” Computer methods in applied mechanics and
engineering, vol. 171, no. 3-4, pp. 419–444, 1999.

[45] M. Li, M. Gao, T. Langlois, C. Jiang, and D. M. Kaufman, “Decom-
posed optimization time integrator for large-step elastodynamics,”
ACM Transactions on Graphics, vol. 38, no. 4, 2019.

[46] M. Li, “Robust and accurate simulation of elastodynamics and
contact,” Ph.D. dissertation, University of Pennsylvania, 2020.

[47] G. Guennebaud, B. Jacob et al., “Eigen v3,”
http://eigen.tuxfamily.org, 2010.

[48] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, “Algo-
rithm 887: Cholmod, supernodal sparse cholesky factorization and
update/downdate,” ACM Transactions on Mathematical Software
(TOMS), vol. 35, no. 3, pp. 1–14, 2008.

[49] M. A. Otaduy, R. Tamstorf, D. Steinemann, and M. Gross, “Implicit
contact handling for deformable objects,” vol. 28, no. 2, 2009.

[50] H. Sönnerlind, “How to model adhesion
and decohesion in comsol multiphysics,” Jul
2016. [Online]. Available: https://www.comsol.com/blogs/
how-to-model-adhesion-and-decohesion-in-comsol-multiphysics

Yu Fang is a Ph.D. student majoring in Com-
puter and Information Science at University of
Pennsylvania. He is advised by Prof. Chenfanfu
Jiang and is currently visiting UCLA. Yu gradu-
ated from Tsinghua University in 2018. His pri-
mary research interest is physically based simu-
lation. Currently, Yu has been working on utilizing
material point method (MPM) to simulate differ-
ent phenomena and developing novel technol-
ogy to accelerate existing simulation framework.

Minchen Li is an Assistant Professor in the
CS department at Carnegie Mellon University.
He was previously an Assistant Adjunct Profes-
sor of Mathematics at UCLA following his Ph.D.
from the University of Pennsylvania. Minchen’s
Ph.D. dissertation, advised by Chenfanfu Jiang,
is recognized by the 2021 ACM SIGGRAPH Out-
standing Doctoral Dissertation Award for intro-
ducing the Incremental Potential Contact (IPC)
method, which has led to a series of follow-up
works in both academia and industry.

Yadi Cao is a Ph.D. student in Computer Sci-
ence at UCLA, under the supervision of Prof.
Chenfanfu Jiang and Prof. Demetri Terzopoulos.
His primary research interest is optimizing large-
scale machine learning, as well as the potential
application of machine learning in the physical
simulation, engineering design, and operation
research. Yadi received his MASc in Mechan-
ical Engineering from the University of British
Columbia in 2018.

Xuan Li is a Ph.D. in Mathematics at UCLA,
advised by Prof. Chenfanfu Jiang. Before that,
he was a PhD student at Sig Lab, the Uni-
versity of Pennsylvania, working in the same
group. Xuan’s current research interests are
physics-based simulation, ML-aided simulation
and sim2real/real2sim applications. Xuan re-
ceived his M.Sc. in Computer Science from the
State University of New York at Stony Brook in
2020, and his B.Sc. in Mathematical Sciences
from Tsinghua University (China) in 2017.

Joshuah Wolper is currently a postdoctoral re-
searcher at UPenn MEAM studying methods to
simulate thrombotic rupture, embolism, and fib-
rin fracture in collaboration with Professors John
Bassani, Prashant Purolhit, and experts at the
Perelman School of Medicine. As a past Harlan
Stone Fellow at the University of Pennsylvania,
Joshuah recently finished his PhD in Computer
and Information Science advised by Professor
Chenfanfu Jiang. His dissertation is Material
Point Methods for Simulating Material Fracture.

Yin Yang is an associate professor with School
of Computing, University of Utah. Yin received
his Ph.D. from University of Texas at Dallas (with
David Daniel fellowship). He is a recipient of the
NSF CRII award (2015) and CAREER award
(2019). Yin’s research aims to develop efficient
and customized computing methods for chal-
lenging problems in Graphics, Simulation, Ma-
chine Learning, Vision, Visualization, Robotics,
Medicine, and many other applied areas.

Chenfanfu Jiang is an associate professor of
Mathematics at UCLA. He obtained his Ph.D. de-
gree in 2015 from UCLA co-advised by Demetri
Terzopoulos and Joseph Teran. He is a recipi-
ent of the UCLA Edward K. Rice Outstanding
Doctoral Student Award (2015) and NSF CA-
REER award (2020). He directs UCLA Multi-
Physics Lagrangian-Eulerian Simulations Lab-
oratory with projects spanning scientific com-
puting, computer graphics, metaverse, computa-
tional mechanics, machine learning.

https://www.comsol.com/blogs/how-to-model-adhesion-and-decohesion-in-comsol-multiphysics
https://www.comsol.com/blogs/how-to-model-adhesion-and-decohesion-in-comsol-multiphysics

	Introduction
	Related Work
	Adhesion Modeling
	Barrier-based Contact

	Background
	Incremental Potential Contact (IPC)
	The Raous-Cangemi-Cocou (RCC) Adhesion Model
	Normal Adhesion
	Tangential Adhesion
	Adhesion Intensity


	Method
	Augmented IPC Barrier for Normal Adhesion
	Strength of Normal Adhesion
	Tangential Adhesion

	Evaluation
	Ablation Studies
	Adhesion Model
	Distance Threshold

	Comparison to LCP-based Method
	Adhesion v.s. Friction
	Debonding
	Real-World Experiments
	Performance
	Timing Breakdown
	Newton Solver Configuration
	Different Adhesion Strength


	Conclusion and Future Work
	References
	Biographies
	Yu Fang
	Minchen Li
	Yadi Cao
	Xuan Li
	Joshuah Wolper
	Yin Yang
	Chenfanfu Jiang


