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Figure 1: (a) the "kitten" mesh of genus one, (b) the polycube graph, (c) the homology loops, (d) the arc colorization, (e) the initial directions,
(f) the polycube topology.

Abstract
There are many methods proposed for generating polycube polyhedrons, but it lacks the study about the possibility of generating
polycube polyhedrons. In this paper, we prove a theorem for characterizing the necessary condition for the skeleton graph of a
polycube polyhedron, by which Steinitz’s theorem for convex polyhedra and Eppstein’s theorem for simple orthogonal polyhedra
are generalized to polycube polyhedra of any genus and with non-simply connected faces. Based on our theorem, we present a
faster linear algorithm to determine the dimensions of the polycube shape space for a valid graph, for all its possible polycube
polyhedrons. We also propose a quadratic optimization method to generate embedding polycube polyhedrons with interactive
assistance. Finally, we provide a graph-based framework for polycube mesh generation, quadrangulation, and all-hex meshing
to demonstrate the utility and applicability of our approach.

CCS Concepts
•Mathematics of computing → Graphs and surfaces; • Computing methodologies → Mesh models; Mesh geometry mod-
els;

1. Introduction

The relationship between a graph and a polyhedron is a crucial
and challenging problem. However, there are few of attempts on
it. Steinitz’s theorem [Zie12; GKKZ67] establishes a bi-directional
relationship between a graph and a convex polyhedron in R3 by
the statements that "a graph is the skeleton graph of a convex poly-
hedron if and only if it is 3-connected and planar." Branko Grün-
baum call it "the most important and deepest known result on 3-
polytopes" [GKKZ67].
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A k-connected graph remains connected when few than k ver-
tices are removed. A planar graph can be embedded in the plane. If
each vertex has k neighbors, it is called a k-regular graph. A bipar-
tite graph is a graph whose vertices can be divided into two disjoint
and independent groups, a bipartite graph does not have odd-length
cycles.

Steinitz’s theorem works only for convex polyhedra. Eppstein
et al. [EM10] propose an analogous theorem for a special kind of
non-convex polyhedra named simple orthogonal polyhedra, which
satisfies three requirements: 1) the sphere topology, 2) simply con-
nected faces, 3) exactly three mutually-perpendicular axis-parallel
edges meeting at every vertex. Eppstein’s theorem states "a graph is
the skeleton graph of a simple orthogonal polyhedron if and only if
it is bipartite, planar, 3-regular and removal of any 2 of its vertices
disconnects it into at most 2 components." Furthermore, based on

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Hui Zhao et al. / Polycube Shape Space

these characterizations of simple orthogonal polyhedra, Eppstein et
al. [EM10] present a linear algorithm to construct a simple orthog-
onal polyhedron from a valid graph.

Simple orthogonal polyhedra is a special kind of well-known
polycube polyhedron in the graphics community, whose every face
is perpendicular to one of the coordinate axes. In this paper, we
prove a theorem that generalizes Steinitz’s and Eppstein’s theo-
rems for a broader class of polycube polyhedra with any genus,
non-simply connected faces, but we also require that three edges
meeting at every vertex (Note that there are polycubes whose ver-
tex has more than three edges). Our theorem states that " a polycube
graph (3.1) is a skeleton graph of a polycube polyhedron (3.2) if the
patch number of the graph is bigger than 3." Based on our frame-
work, we further design a linear system to build a space of polycube
polyhedra from the corresponding graph. Our approach is flexible
to adjust the geometry of a polycube polyhedron. In summary, given
a graph, our theorem addresses the following problem: 1) the ex-
istence of the polycube polyhedron; 2) the dimension of polycube
shape space; 3) the method to generate the polycube polyhedron.

Polycube mesh (or polycube) plays an important role in graphics
research. Polycube is firstly proposed in [THCM04] to extend cube
mapping to general shapes. Polycube has a highly regular structure
and a special global parametric domain. It is a special geometric
shape that all face normals are aligned with one axis of a spe-
cific orthonormal coordinate frame. Polycube removes the detail
of the original meshes and captures its global features. It has been
used in many kinds of graphics applications, such as: surface tex-
turing [THCM04], volumetric texturing [CL*10], parameterization
[GXH*13], reconstruction [WJH*08], shape morphing[FJFS05]
and T-mesh construction [LZLW15]. Many algorithms of hexahe-
dral remeshing [GSZ11; HXH10; LVS*13; HJS*14; FBL16] also
rely on polycube mesh heavily. Usually, they generate a correspond-
ing polycube mesh from the original shape by deformation, the dif-
ficult hexahedral meshing operation is transferred onto the poly-
cube mesh.

(a) (b) (c)

(d) (e) (f)

Figure 2: (a) the original mesh; (b) the polycube graph embedded
on the mesh; all patches are colored according to their orientations
(c),(d); the polycube polyhedron (e); the polycube mesh (f).

Currently, there are two major frameworks in quadrangula-

tion and all-hex meshing: deformation based [FBL16; HJS*14;
LVS*13; GSZ11] and frame-field based [NRP11; HTWB11;
LLX*12; JHW*14; LBK16]. By the relationship between a graph
and a polycube polyhedron, we provide a graph-based framework
for the quadrangulation and all-hex meshing applications. Our
framework works as follows: given an input graph embedded in a
mesh, first, we build a polycube polyhedron, then we map the orig-
inal mesh onto it to achieve a polycube mesh, which can be used in
quadrangulation and all-hex meshing.

Contribution. Our major contribution is proving a theorem which
characterizes the relationship between a graph and a polycube poly-
hedron, our theorem provides a necessary condition for the skeleton
graph of a polycube polyhedron. Our second contribution is to de-
sign a linear system to realize a set of adjustable polycube polyhe-
dra for a valid graph. Our third contribution is presenting a graph-
based framework for the applications of polycube mesh generation,
quadrangulation, and all-hex meshing, as demonstrated in Fig. 2b.

The organization of the paper is: Section 2 summarizes the rel-
evant works; the concepts are introduced in Section 3; polycube
shape space is explained in Section 4; the embedding is detailed in
Section 5; finally the applications of quadrangulation and all-hex
meshing are illustrated in Section 6.

2. Related Works

The most related work to ours is Steinitz’s theorem [Zie12;
GKKZ67] and Eppstein’s theorem [EM10]. Our polycube shape
space is also motivated by the applications of polycube generation,
mesh parameterization, quadrangulation, all-hex meshing. Because
of the abundance of literature, we will focus only on the ones which
are directly relevant to ours.

In two dimensions, a graph is a skeleton graph of a polytope if
and only if it is a cycle. In three dimensions, Steinitz’s theorem
addresses what kind of graph can be the skeleton graph of a con-
vex polyhedron. The sufficient and necessary condition between a
graph and a general non-convex polyhedron is still unknown. For
convex polyhedra with all vertices on a sphere, the graph-theoretic
characterizations are discussed in [DS96; HRS92; Riv96]. For non-
convex polyhedra with star-shaped faces, and all but one face are
visible from a common viewpoint, the characterizations are ad-
dressed in [Hon08].

Two special cases of simple orthogonal polyhedron : corner
polyhedron and xyz polyhedron are investigated in [EM10] (see
[EM10, Fig. 1]). If all but three faces of a simple orthogonal poly-
hedron are oriented towards the vector, it is called corner polyhe-
dron. If each axis-parallel line of a simple orthogonal polyhedron
has at most two vertices, it is called xyz polyhedron. A corner poly-
hedron is always an xyz polyhedron. Eppstein et al. [EM10] prove
the following theorems:

Theorem 2.1 ([EM10]) A graph is the skeleton graph of a corner
polyhedron if and only if it is planar, bipartite, 3-regular and its
dual is 4-connected.

Theorem 2.2 ([EM10]) A graph is the skeleton graph of an xyz
polyhedron if and only if it is planar, bipartite, 3-regular and 3-
connected.
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A simple orthogonal polyhedron can be divided into xyz poly-
hedrons, which furthermore is separated into corner polyhedrons.
Their induction proof also gives an efficient linear time algorithm
to construct the simple orthogonal polyhedron for a given graph.
While Steinitz’s and Eppstein’s statements are remarkable, it is lim-
ited to a small class of polyhedra, our approach can address and
construct more polyhedra.

In the graphics community, polycubes are constructed from
not graphs, but meshes. The methods in [THCM04; YL08] con-
struct polycube manually, then another extracting step is applied to
achieve the cross-surface mapping between the mesh and its poly-
cube shape [WJH*08]. The method in [LJFW08] uses segmenta-
tion and box-primitives to approximate original models, but it fails
on complicated meshes. A divide-and-conquer algorithm is applied
in [HWFQ09], however, it generates over-refined polycubes. Both
of [HWFQ09; LJFW08] can not build the cross-surface mapping
automatically.

The deformation based approaches in [GSZ11; HJS*14; FBL16]
obtain polycube meshes by minimizing an energy. Given a sur-
face and a valid polycube topology, Zhao et al. [ZLL*18] propose
a novel method to deform a mesh into its polycube mesh by ro-
tating face normals. The algorithm in [GSZ11] uses a rotation-
driven method to align each surface normal to one direction of
(±X ,±Y,±Z) gradually; then a position-driven deformation is
used to enforce the planarity and straightness. Based on the obser-
vation that every face normal of a polycube is aligned with one axis
and the value of the `1-norm of every unit face normal is equal to 1,
Huang et al. [HJS*14] propose a `1-norm energy weighted by tri-
angle areas and a variational method to generate polycube meshes.
However, their system is nonlinear and the results are affected by
the orientation of the mesh. They need another energy to find an
optimal global orientation and a post-processing cleanup step to fix
spurious topological degeneracy.

The graph-cut based approach [LVS*13] balances the parame-
terization distortion and the number of singularities of polycube
vertice. Fu et al. [FBL16] propose another face normal-rotation
method to deform a mesh into a polycube mesh. A method pro-
posed in [CLS16] simplifies the complicated polycube topology. A
special method that extends polycubes and parameterizes a mesh
with more than one chart is proposed in [FXBH16]. However, this
method is designed for all-hex meshing directly, and can not pro-
duce a polycube mesh.

Frame-field based hexahedral mesh generation is applied in
[HTWB11; JHW*14; LBK16], which has internal singularities
and can not guarantee a valid singularity structure. Polycube
based hexahedralization can produce a special kind of hexahedral
mesh which has no internal singularity [GSZ11; HJS*14; LVS*13;
FXBH16]. These mesh-based methods normally generate one sin-
gle polycube mesh, instead, our graph-based one can obtain a set of
results by embedding a graph on the mesh. Analyzing and optimiz-
ing the polycube structure by a graph is also studied in [CXW*19].

3. Background

3.1. Basic Concepts

In this paper, we distinguish the concepts of polycube polyhedron
and polycube mesh. A polycube polyhedron is a polyhedron with
planar orthogonal polygonal faces (Fig. 2e). A polycube mesh has
the same overall shape with its corresponding polycube polyhe-
dron, but every planar polygonal face is triangulated (Fig. 2f). We
call a layout graph on a mesh as a polycube graph if it can lead to
a valid polycube topology (Fig. 2b). If all patches of a mesh sep-
arated by a layout graph can be assigned a valid set of coordinate
axis labels (as shown in Fig. 2c and 2e, the red, green and blue
colors represent the labels of X ,Y,Z axis respectively), we call this
assignment a valid polycube topology,

Definition 3.1 A layout graph is called a polycube graph G =
(N,A,P) with the nodes N, the arcs A and the patches P, if it satis-
fies two conditions: 1) each node ni ∈ N is of valence 3, i.e. there
are 3 arcs incident to it; 2) each patch pi ∈ P has an even valence,
i.e. there are even number of nodes along the border of each patch.

A polycube graph is 3-regular. A patch corresponds to a graph
cycle. In this paper, we only discuss a special subset of all valid
polycubes in general sense. For example, the red node of the poly-
cube in Fig. 3a has valance 4, therefore this layout graph does not
satisfy our requirements. However, we can always modify this kind
of graph to be valid, then generate a similar polycube (Fig.3b). Note
that If each patch is of valence 4, then it is called quad layout graph
[CK14].

(a) (b)

Figure 3: (a) A polycube that violates our requirements; (b) modi-
fied valid version.

Definition 3.2 A polycube polyhedron is a three-dimensional poly-
hedron (not necessarily convex) which has exactly three mutually-
perpendicular axis-parallel edges meeting at every vertex.

The vertices, edges, faces of a polycube polyhedron correspond
to the nodes, arcs, patches of a polycube graph. The surface nor-
mals of a polycube polyhedron are axis-aligned and each face is
perpendicular to one coordinate axis. Note that a valid polycube
graph may lead to an invalid polycube polyhedron. For example, in
Fig. 4, the polycube graph is valid, however, the heights of the two
red edges in the vertical direction are 0, the polyhedron is not valid.

Definition 3.3 If a polycube graph has an embedding in R3 to form
a polycube polyhedron, such an embedding is called a polycube
embedding of the polycube graph.

When a polycube graph G is embedded in a mesh M, each node
ni, each arc ai of G are mapped to a vertex vi and a chain of edges
Ci = {e1,e2, . . . ,en} of mesh M respectively (Fig. 5). A mesh can
have many different embedded polycube graphs (Fig. 6).
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Figure 4: A valid polycube graph maybe leads to an invalid poly-
hedron (the height of two red edges are 0).

(a) (b)

Figure 5: A polycube graph embedding in R3 (a) and an embedding
on a mesh (b).

(a) (b) (c) (d)

Figure 6: The different polycube graphs (a) (c) embedded on the
same mesh and their corresponding polycube polyhedra (b) (d).

3.2. The Characteristics of Polycube Polyhedra

A polycube polyhedron is also called an orthogonal polyhedron
[LVS*13; EM10]. It can have any kind of genus. The faces on a
polycube polyhedron can be simply or non-simply connected. A
simply connected face is of disk-topology, while a non-simply con-
nected face has some holes inside it (Fig. 7).

(a) Original (b) Polycube

Figure 7: The non-simply connected faces (red) on a model and on
the corresponding polycube polyhedron.

A polycube polyhedron itself is a 2-dimensional manifold. Its

skeleton determines a unique polycube graph. However, for a poly-
cube graph, the corresponding polycube polyhedron is not unique,
as shown in Fig. 8.

(a) (b) (c)

Figure 8: Two different polycube polyhedra (b) (c) correspond to
the same polycube graph (a).

The Gaussian curvature si of any vertex i of a polycube polyhe-
dron has only two options: + π

2 (the white vertices in Fig. 9 and Fig.
10) and− π

2 (the black vertices). The sum of all Gaussian curvatures
must satisfy the Gauss-Bonnet theorem:∑si = 2π(2−2g), where g
represents the genus. Some geometric information of a polycube
polyhedron can be determined by the combinational features of the
polycube graph. If three neighboring patches of one node of a poly-
cube graph are all of valence 4, then the Gaussian curvature of the
corresponding vertex on the polycube polyhedron must be + π

2 (the
black vertices in the red circle of Fig. 9).

(a) (b) (c) (d)

Figure 9: The pre-determined Gaussian curvatures.

For a polycube polyhedraon of genus zero, the difference be-
tween the numbers of vertices with Gaussian curvature + π

2 and− π

2
is eight; for a polycube polyhedraon of genus one, the two groups
have the same number of vertices.

For a non-simply connected face of a polycube polyhedron, there
are more than one arc loops in the corresponding polycube graph.
If an inner arc loop consists of four arcs, then the Gaussian curva-
tures of the vertices on this inner arc loop are all − π

2 ; if an outer
arc loop consists of four arcs, then the Gaussian curvatures of the
vertices are all + π

2 . For example, the white vertices (− π

2 ) and the
black vertices (+ π

2 ) in Fig. 10. In fact, all Gaussian curvatures of
the vertices can be pre-determined in Fig. 10. However, a polycube
graph corresponds to many different polycube polyhedra, its com-
binational structure cannot determine all Gaussian curvatures.

4. Polycube Shape Space

In this section, we present an algorithm to construct a vector space
of polycube polyhedron from a polycube graph and prove the nec-
essary condition for the skeleton graph of a polycube polyhedron.
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(a) (b) (c) (d)

Figure 10: The pre-determined Gaussian curvatures on the non-
simply connected faces.

4.1. Arc Colorization

We observe that a polycube polyhedron has two crucial properties:
1) the directions of all edges on one face fi must switch between
two axes of d1,d2; 2) the normal of the face fi must point to the
third axis of d3. Based on these observations, we design an arc
colorization algorithm to assign axis labels to all arcs of a poly-
cube graph, such that we can determine the coordinate axes for
the edges and the faces of its corresponding polycube polyhedron
accordingly. Note that the color label on an arc indicates its axis,
it can not distinguish the positive or the negative directions of the
axis.

(a) Blade (b) Bottle (c) Grayloc

Figure 11: The colorized arcs. The arcs of a polycube graph are
curve lines, for better visualization, we draw them by straight lines
on a virtual polycube polyhedron.

Let red, blue, green colors represent the X , Y , Z coordinates re-
spectively. First, we start from a node of the polycube graph G and
assign three colors to its three neighboring arcs; then our algorithm
travels the whole polycube graph patch by patch with a breadth-first
method and colorizes the arcs of every patch by switching between
two corresponding colors. Some colorized polycube graphs are ex-
hibited in Fig. 11. The pseudocode is shown in Alg. 1.

Three colors have six permutations, which leads to six differ-
ent colorizations for a polycube graph. However, all of them are
equivalent under rotation and reflection transformations. Any per-
mutation can be our input for the next step.

4.2. Differential One-Form

A polycube embedding induces a natural vector valued differen-
tial one-form and differential 0-form on a polycube graph. First,
we define an edge length function L on all arcs A of a polycube

ALGORITHM 1: Arc Colorization
Input: A polycube graph G = (N,A,P)
Output: A 3-colorization of the arc set A

1. Choose a root patch p0 in P and colorize its arcs using two different
colors alternatively.

for each node n j of patch p0 do
2. Use the left one color to colorize the left one arc at n j that is not

colorized
end
for pi in the breadth-first sequence of P from p0 do

3. Traverse along arcs of pi, assume colors have been used are c1 and
c2.

4. Colorize left arcs of pi using c1,c2 such that colorization is an
alternative pattern.

5. for each node n j of patch pi do
Use color c3 to colorize the left one arc at n j that is not colorized

end
end
return 3-colorized polycube graph G.

graph as: L : A→ R. Second we define a positive orientation on
A: d : A → {e1,e2,e3}, where e1,e2,e3 is the standard basis of
R3. Then we propose a vector-valued differential one-form on the
polycube graph G as: ω = L ∗ d, where "∗" is the scalar prod-
uct. The exterior derivative of ω is a 2-form on the patch set P:
dω(pi) = ∑a j∈pi

ω(a j), here a j is the boundary arcs of the patch
pi. The integration of ω on a directed arc chain γi is defined as:∫
γi

ω = ∑a j∈γi
ω(a j).

For a polycube polyhedron embedded in R3, the total sums of
the edge length vectors on every loop of the polycube polyhedron
are 0. It means the differential one-form ω is closed and exact. A
closed differential one-form ω satisfies:

dω = 0. (1)

The integration of an exact differential one-form on any closed loop
is 0, it is equivalent to that the integration is 0 on every homology
basis of the homolopy group H(G) of a polycube graph G:∫

γi

ω = 0, ∀γi ∈ H(G), (2)

Accordingly, we can compute a vector valued differential 0-form
Vω on the nodes N of the polycube graph G by integrating this dif-
ferential one-form, such that the differential 0-form Vω determines
the vertex positions of the corresponding polycube polyhedron:

Vω : N→ R3.

We pick up any node n0 as the root and set its position to be
(0,0,0), then the position of any other node ni can be integrated as:

Vω(ni) =
∫

γ(n0,ni)
ω,

where γ(n0,ni) is an arc chain from n0 to ni.

4.3. Linear System

The differential one-form ω consists of two parts: L and d, the axis
of d of each arc is already computed by the colorization. We can
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randomly choose a positive direction for d (Fig. 12). The variable
Li may be negative, which means that the corresponding edge has
the opposite direction to this initial assignment.

(a) (b) (c) (d)

Figure 12: The colorized arcs are shown in (a), (b), (c), and the
initial directions are exhibited in (d).

If a patch has more than one boundary, it is a non-simply con-
nected patch (Fig. 13a), we need to pre-process them to be simply
connected (Fig. 13b) by splitting the arcs and adding more arcs.
Note that the newly added patches may not be able to embed in R3.
But the splitting will not affect the positions of original nodes, i.e.,
the embedding of the original polycube graph. The pseudocode is
detailed in Alg. 2.

(a) Non-simply (b) Simply

Figure 13: The non-simply connected patch (a); the modified sim-
ply connected patch (b).

The added edges are just logical connection which guarantees
that all vertices are connected (by real edges or virtual edges). This
is helpful for colorization and linear system construction. The final
embedding only includes real edges (the edges before splitting).
We can imagine these connections as free ropes that connect the
inner holes to the outside boundary. They can freely move along
the boundary.

For each patch p j, the equation is of the form:

dω(p j) = ∑
ai∈p j

(Li ·di) = 0. (3)

If the genus of the mesh is not zero, i.e., the genus of its embed-
ding polycube graph is not zero. For each homomogy basis loop γ j
(Fig. 14 and Fig. 15) in its homology group H(G), the equation is
of the following form:∫

γ j

ω = ∑
ai∈γ j

(Li ·di) = 0. (4)

Eqn. 3 and 4 in combination can be expressed as a linear system:

W ·L = 0 (5)

ALGORITHM 2: Non-simply connected patches

Input: A polycube layout G = (V,A,P) with some non-simply connected
faces

Output: New polycube layout G′ = (V ′,A′,P′) without non-simply
connected patches

for pi in the set of non-simply connected faces do
1. Assume pi is colorized by color c1 and c2. Find two arcs a1,a2

colorized by c1 in outer boundary of p.
2. Get all inner holes of pi: h1,h2, ...,hn.
for i← 1 to n do

3. Find an arc in hi colorized by c2. Assume its end vertices are
v1,v2.

4. Add a vertex v1i to a1, v2i to a2.
5. Add an arc between v1 and v1i, an arc between v2 and v2i.

end
end
return New polycube graph G′.

(a) Graph (b) Loop1 (c) Loop2 (d) Loop3 (e) Loop4

Figure 14: The four homology basis loops (red lines) of the "double
torus" model.

(a) Graph (b) Loop1 (c) Loop2 (d) Loop3 (e) Loop4

Figure 15: The four homology basis loops (red lines) of the "sculpt"
model are illustrated on the virtual polycubes.

4.4. Kernel Space

If the dimension of the kernel space K of the matrix W is zero, it
means that there is no valid polycube polyhedron. We define the
kernel space of the matrix W as the polycube shape space of the
corresponding polycube graph. The basis of the kernel space forms
the basis of the polycube shape space, as shown in Fig. 16. We
generalize the Eppstein’s result [EM10] by the following theorem.

Theorem 4.1 If a polycube graph can realize a polycube polyhe-
dron embedded in R3, then the dimension of the corresponding
kernel space K is not zero.

This is a necessary condition, some elements in the polycube
shape space cannot lead to a valid polycube embedding.

We denote the numbers of nodes, arcs and patches of a polycube
graph layout as |N|, |A|, |P|. After arc splitting, these three quan-
tities become |N′|, |A′|, |P′|. Assume there are k inner loops in all
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Table 1: The dimension of polycube shape spaces

Model |N| |A| |P| |N′| |A′| |P′| genus dimension
airplane 52 78 28 52 78 28 0 25

armadillo 236 354 120 236 354 120 0 117
armchair 24 36 14 24 36 14 0 11

bimba 68 102 38 72 110 40 0 35
bone 40 60 22 40 60 22 0 19

bunny 84 126 44 84 126 44 0 41
coverrear 72 108 44 84 132 50 0 41

david 90 135 47 90 135 47 0 44
dente 44 66 24 44 66 24 0 21
dino2 106 159 55 106 159 55 0 52
hand 48 72 26 48 72 26 0 23
max 64 96 35 66 100 36 0 32
pear 24 36 16 28 44 18 0 13

pensatore 136 204 70 136 204 70 0 67
sphinx 72 108 38 72 108 38 0 35
bottle 52 78 29 58 90 32 1 26
camel 284 426 144 288 434 146 1 141
dragon 210 315 105 210 315 105 1 102
kitten 46 69 24 48 73 25 1 21
rocker 66 99 36 72 111 39 1 33
teaport 48 72 28 56 88 32 1 25

cup 32 48 18 40 64 22 2 15
dtorus 40 60 22 48 76 26 2 19
eight 24 36 14 32 52 18 2 11
sculpt 40 60 18 40 60 18 2 15
block 48 72 26 60 96 32 3 23

elephant 176 264 85 178 268 86 3 82
holes3 32 48 18 44 72 24 3 15

kiss 146 219 70 148 223 71 3 67
Deckel 80 120 40 92 144 46 4 37
fertility 104 156 46 104 156 46 4 43

sculpture 108 162 51 114 174 54 4 48
botijo 154 231 71 158 239 73 5 68

dancing 216 324 101 230 352 108 8 98

non-simply connected patches. One observation is:

|N′|= |N|+2k

|A′|= |A|+4k

|P′|= |P|+ k

(6)

We induce the following theorem for the dimension of polycube
shape space. The experimental statistics are shown in Table 1.

Theorem 4.2 For a polycube graph with the number of nodes |N|,
arcs |A|, patches |P| respectively, the dimension of its polycube
shape space is at least |P|−3.

PROOF. By Euler’s polyhedron formula,

|N′|− |A′|+ |P′|= 2−2g. (7)

There are three arcs for every node of a polycube graph, so we
have

3|N|= 2|A|, (8)

By Equation 6 and the two equations above, we get

|A|= 3|P|−3k−6+6g (9)

Every patch (before adding auxiliary arcs) at most provides 2
equations (on the two axes the face spans respectively), of the form
Equation 3. After the arc splitting step, each inner loop at most
provides 1 equation (on the axis the two added arcs belong to).
But there is one redundant equation on each axis. So there are at
most 2|P|+ k−3 independent equations provided by patches. An-
other part of equations comes from homology basis of the poly-
cube graph, of the form Equation 4. There are 2g loops in the ho-
mology basis. Every loop spans all three axes, so all loops pro-
vide at most 6g independent equations. In total, there are at most
2|P|+ k− 3+ 6g independent equations in the linear system. The
number of variables is |A′|. Thus, according to Equation 9 and
Equation 6, the kernel dimension of the linear system would be
|P|− 3. All shape spaces in our extensive experiments achieve ex-
actly |P|−3 dimensions.
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(a) Basis 1 (b) Basis 2 (c) Basis 3

(d) Basis 4 (e) Basis 5 (f) Basis 6

Figure 16: The basis of the polycube shape space for the "duck"
mesh and a polycube graph. The directions of the basis are with
respect to the initial assignment.

5. Polycube Embedding

Let Ω = {ω1,ω2, . . . ,ωn} denote the basis of a polycube shape
space. Every exact and closed differential one-form ω can be ex-
pressed as a linear combination of the basis ω

i as the following:

ω = ∑
ωi∈Ω

ci ·ωi, (10)

where ci is the weight coefficient of the linear combination.

Assume ω has a valid polycube embedding, let Vω denote the set
of vertex positions of that embedding, then Vω must be able to be
realized in R3 space by integrating ω, i.e., a 0-form. Every basis ω

i

induces a 0-form V i
ω, which has value Vωi(v j) on a vertex v j. We

call VΩ = {Vω1 ,Vω2 , . . . ,Vωn} as the basis of all 0-forms.

The 0-form Vω(v j) can be expressed by a linear combination of
the basis of VΩ:

Vω(v j) = ∑
VΩ

ciVωi(v j) = ∑
ωi∈Ω

ciω
i(v j) = ∑

ωi∈Ω

ci

∫ v j

v0

ω
i, (11)

where the root vertex v0 has the position (0,0,0).

Each element of the polycube shape space corresponds to a 0-
form. But not all of them can be embedded in R3. If a polycube
graph is embedded on a mesh and we look for an optimal polycube
embedding to approximate the mesh, we propose to use the posi-
tions of the nodes of a polycube graph embedded on the mesh as
the target position V̄ , then we define a polycube energy Ep as the
following quadratic format to find the optimal 0-form Vo:

Ep = (Vo− V̄ )2 = ( ∑
ωi∈Ω

ci ·
∫

ω
i− V̄ )2 (12)

The optimal solution Vo, i.e., the optimal polycube polyhedron,
approximates the target V̄ closely, i.e., the original mesh, as shown
in Fig. 17. There are six optimal solutions corresponding to six

color schemes, we choose the one with the smallest energy error
as our result.

(a) Duck (b) Polycube

Figure 17: The "duck" model and its optimal polycube polyhedron.

5.1. Prescribed Constraints.

Our method has a special feature in generating the polycube poly-
hedron. We can add edge length constraints in the energy system,
as shown in Fig. 18. Since we do not know the edge directions
before embedding, we adjust the edge length values after embed-
ding and reconstruct the polycube embedding. For example, after
the first embedding, we get the length value of the arc ai as Li = li,
then we can add the following constraint to modify this edge length
by scalar k:

Li = kli, (13)

we can also change its direction:

Li =−li. (14)

(a) (b) (c)

(d) (e) (f)

Figure 18: The polycube embeddings with the four different edge
length constraints (red line).

5.2. Non-Degenerated Polycube Embedding

The embedding of some differential one-forms from the poly-
cube shape space will produce a degenerated polycube embedding,
which has two critical status: 1) the arcs on the same face cross each
other (Fig. 19); 2) a face intersects with another non-neighboring
face, i.e., two faces are tangent to each other.

The first critical status can be expressed as the linear equality:

Li = 0. (15)

The second critical status can be expressed as the linear equality:

(Vω(vi)−Vω(v j)) ·ni = 0, (16)
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(a) Degenerated (b) Fixed

Figure 19: The degenerated cases.

here vi,v j are two vertice of face fi, f j respectively, and ni is the
unit normal vector of face fi. This equality means that the distance
between two parallel faces f1 and f2 is zero.

The adjacent patches in a polycube graph are orthogonal in the
polycube polyhedron. If there are two faces co-planar, they must
be non-adjacent patches. We treat this case to be not valid. On the
other hand, the purpose of this constraint is to constrain that one
face should be on the desired side of the other face. This kind of
constraints is added only when we find that the change of side can
eliminate face intersections.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 20: The "pear" (a), (b) and "glass" (e), (f) models with two
different views; the degenerated polycube embedding (c), (g); the
fixed polycube embedding (d),(h).

An optimal polycube polyhedron without degeneration (Fig. 20)
can be constructed by solving a system of quadratic optimization
with linear inequality constraints.

minimize Ep = (Vo− V̄ )2 = ( ∑
ωi∈Ω

ci ·
∫

ω
i− V̄ )2

subject to

Li ≥ ε, or

Li ≤−ε, or

(Vω(vi)−Vω(v j)) ·ni ≥ ε, or

(Vω(vi)−Vω(v j)) ·ni ≤−ε

where ε is the smallest allowed edge length.

Interactive user interface [LS07] is proved to be a useful tool
in graphic applications. We also use an interactive user interface
to set up the unknown inequality value by visualization of the re-
sutls and update the degenerated polycube embedding to a valid
one. Since each polycube graph already has an embedding in the
original mesh, in our experiment, such adjustment rarely happens.

(a) Airplane (b) Airchair (c) Armadilo

Figure 21: The polycube polyhedra of some meshes of genus zero.

(a) Botijo (b) Dancing children (c) Elk

Figure 22: The polycube polyhedra of some meshes of the high
genus.

We demonstrate the applicability of our polycube embedding al-
gorithm with dozens of varying meshes, some are exhibited in Fig.
21 and Fig. 22. Since our algorithm is based on a linear system, it
is very fast. Our experiments show that our method is robust to the
meshes of different genus and geometries.

6. Applications

In this section, we demonstrate that our framework of polycube
shape space can be applied in the applications of polycube mesh,
quadrangulation [BZK09; BLP*13] and all-hex meshing [HJS*14;
FBL16].

6.1. Polycube Mesh

Different from previous deformation based methods, we propose a
graph-based approach to create a bijective cross-mapping polycube
mesh (Fig. 27) by parameterizing a mesh M onto the polycube poly-
hedron generated from an input polycube graph. We call it poly-
cube parameterization (Fig. 23), which consists of three steps: 1)

c© 2019 The Author(s)
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the nodes of the polycube graph are mapped to the nodes of the
polycube polyhedron; 2) the vertices on the arcs of the polycube
graph are mapped onto the edges of the polycube polyhedron ac-
cording to their length ratio (Fig. 23b); 3) every patch of the mesh
separated by the polycube graph are parameterized onto the cor-
responding face of polycube polyhedron by some fixed-boundary
bijective parameterization [FL16] (Fig. 23d).

(a) Duck (b) Arc mapping (c) Tutte’s (d) Bijective

Figure 23: The triangles in the "orange" circle have flips.

Every patch can apply different parameterization algorithms in-
dependently. If a patch has four arcs and is simply connected, we
use Tutte’s embedding algorithm [Flo03; GGT06] to obtain a bi-
jective result. When a patch has more than four arcs, it may not
have a convex boundary and maybe non-simply connected. There-
fore the Tutte’s method cannot guarantee a bijective result [FP06]
(Fig. 23c), we apply the optimization methods in [FL16; AL13] to
obtain a bijective mapping (Fig. 23d). It is possible to obtain a bet-
ter bijective cross-mapping with lower distortion by adjusting the
prescribed edge lengths to change the shape of the polycube poly-
hedron.

(a) (b) (c) (d)

Figure 24: The original triangular mesh (a), its bijective cross-
mapping polycube mesh (b), the quadrangular polycube mesh (c),
the final quad-meshing result (d).

6.2. Quadrangulation

Polycube mesh can be used in quadrangulation. Given a mesh
and its bijective cross-mapping polycube mesh, first we compute
a quadrangular polycube mesh, second, we pull it back onto the
original mesh by the barycentric coordinates, as exhibited in Fig.
24. More quad-meshing results are provided in Fig. 25.

6.3. All-hex Meshing.

The all-hex meshing algorithms [GSZ11; HJS*14; FBL16] pro-
duce one single optimal tetrahedral polycube mesh by deforming
a volume tetrahedral mesh to minimizing an energy. Our method
uses a different work-flow: 1) prescribe a polycube graph on a sur-
face mesh; 2) generate the tetrahedral volume mesh from a surface
mesh; 3) compute the polycube mesh of the surface mesh; 4) map

(a) Head (b) Ssculpt (c) Bottle

(d) Cup (e) Bunny (f) Teapot

Figure 25: The quad meshing results.

the tetrahedral mesh onto the volume of the polycube mesh; 5) tes-
sellate the polycube mesh into a hexahedral polycube mesh; 6) pull
back the hexahedral polycube mesh onto the original tetrahedral
mesh with the barycentric coordinates. The work-flow is illustrated
in Fig. 26.

The fourth step is a fixed boundary volume parameterization
problem. We use the volumetric harmonic mapping [WGC*04] to
get an initial result with flips, then an optimization method [FL16]
can be applied to improve the volume mapping.

(a) (b) (c)

(d) (e) (f)

Figure 26: The tetrahedral mesh (a); the cross-mapping tetrahedral
polycube mesh (b); the hexhedral polycube mesh (c); the hex mesh-
ing result (d); the slices of the hexhedral mesh (e), (f).
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(a) (b) (c) (d) (e) (f) (g)

Figure 27: The polycube meshes: the first row shows the original models; the second row exhibits the Tutte’s mappings with flips (red parts),
the flipped triangles are located on the reflect corners [GGT06] of the patches; the third row demonstrates the bijective results

7. Conclusion and Future Work

In this paper, we address the graph-theoretic characterizations of
the skeleton graph of polycube polyhedron of high-genus and non-
simply connected faces. We prove the necessary condition of the
polycube graph. Our proof is based on a linear system that illus-
trates the exact and closed differential one-form. We conclude that
if a polycube graph has more than 3 patches, i.e., circles, then it
could be the skeleton graph of a polycube polyhedron. Our proof
also leads to a polycube embedding algorithm naturally.

Although we focus on establishing the relationship between
graphs and polyhedra to generalize the Steinitz’s theorem and Epp-
stein’s theorem in this paper, we also propose a novel graph-based
framework for the applications of polycube mesh generations, quad
and hex meshing. However, our framework requires a polycube
graph as the input. It is potential to apply some layout graph gen-
eration algorithms [CK14; EGKT08; RRP15; RP17] to find a valid
graph automatically and a better embedding, which follows the fea-
ture lines of the mesh, to achieve a better result.
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